Difference between revisions of "ApCoCoA-1:BB.ASgens"
From ApCoCoAWiki
m (Bot: fixed typo) |
m (fixed links to namespace ApCoCoA-1) |
||
Line 7: | Line 7: | ||
</syntax> | </syntax> | ||
<description> | <description> | ||
− | This command computes the generators of the vanishing ideal of the border basis scheme corresponding to the lifting of the <tt>K</tt>-th element of the list returned by <ref>BB.ASneighbors</ref><tt>(OO)</tt>. | + | This command computes the generators of the vanishing ideal of the border basis scheme corresponding to the lifting of the <tt>K</tt>-th element of the list returned by <ref>ApCoCoA-1:BB.ASneighbors</ref><tt>(OO)</tt>. |
<itemize> | <itemize> | ||
− | <item>@param <em>K</em> An integer in the range 1..Len(<ref>BB.ASneighbors</ref>(OO)).</item> | + | <item>@param <em>K</em> An integer in the range 1..Len(<ref>ApCoCoA-1:BB.ASneighbors</ref>(OO)).</item> |
<item>@param <em>OO</em> A list of terms representing an order ideal.</item> | <item>@param <em>OO</em> A list of terms representing an order ideal.</item> | ||
<item>@return A list of generators of the vanishing ideal. The polynomials will belong to the ring <tt>BBS=K[c_{ij}]</tt>.</item> | <item>@return A list of generators of the vanishing ideal. The polynomials will belong to the ring <tt>BBS=K[c_{ij}]</tt>.</item> | ||
Line 26: | Line 26: | ||
<type>borderbasis</type> | <type>borderbasis</type> | ||
</types> | </types> | ||
− | <see>BB.HomASgens</see> | + | <see>ApCoCoA-1:BB.HomASgens</see> |
− | <see>BB.HomNDgens</see> | + | <see>ApCoCoA-1:BB.HomNDgens</see> |
− | <see>BB.NDgens</see> | + | <see>ApCoCoA-1:BB.NDgens</see> |
<key>ASgens</key> | <key>ASgens</key> | ||
<key>BB.ASgens</key> | <key>BB.ASgens</key> |
Revision as of 07:41, 7 October 2020
BB.ASgens
Computes the generators of the vanishing ideal of a border basis scheme.
Syntax
BB.ASgens(K:INT,OO:LIST):LIST
Description
This command computes the generators of the vanishing ideal of the border basis scheme corresponding to the lifting of the K-th element of the list returned by ApCoCoA-1:BB.ASneighbors(OO).
@param K An integer in the range 1..Len(ApCoCoA-1:BB.ASneighbors(OO)).
@param OO A list of terms representing an order ideal.
@return A list of generators of the vanishing ideal. The polynomials will belong to the ring BBS=K[c_{ij}].
Example
Use QQ[x,y,z]; BB.ASgens(1, [1,x,y,z]); [BBS :: c[1,5]c[2,1] - c[1,3]c[2,2] + c[1,4]c[3,1] - c[1,2]c[3,2] + c[1,2]c[4,1] - c[1,1]c[4,2], BBS :: c[2,2]c[2,3] - c[2,1]c[2,5] - c[2,4]c[3,1] + c[2,2]c[3,2] - c[2,2]c[4,1] + c[2,1]c[4,2], BBS :: c[3,2]^2 + c[2,2]c[3,3] - c[3,1]c[3,4] - c[2,1]c[3,5] - c[3,2]c[4,1] + c[3,1]c[4,2] - c[1,1], BBS :: c[3,2]c[4,2] + c[2,2]c[4,3] - c[3,1]c[4,4] - c[2,1]c[4,5] + c[1,2]] -------------------------------