Difference between revisions of "ApCoCoA-1:BBSGen.Poldeg"
From ApCoCoAWiki
m (Bot: Category moved) |
Andraschko (talk | contribs) (WMat -> Wmat) |
||
Line 1: | Line 1: | ||
<command> | <command> | ||
<title>BBSGen.PolDeg</title> | <title>BBSGen.PolDeg</title> | ||
− | <short_description>This function computes the arrow degree of a given homogenous polynomial from the ring K[c](see <ref>BBSGen. | + | <short_description>This function computes the arrow degree of a given homogenous polynomial from the ring K[c](see <ref>BBSGen.Wmat</ref>). |
Line 8: | Line 8: | ||
<syntax> | <syntax> | ||
− | BBSGen. Poldeg(F,OO,BO,N,W); | + | BBSGen.Poldeg(F,OO,BO,N,W); |
BBSGen.Poldeg(F:POLY,OO:LIST,BO:LIST,N:INT,W:MAT):VECTOR; | BBSGen.Poldeg(F:POLY,OO:LIST,BO:LIST,N:INT,W:MAT):VECTOR; | ||
</syntax> | </syntax> |
Revision as of 14:49, 3 October 2020
BBSGen.PolDeg
This function computes the arrow degree of a given homogenous polynomial from the ring K[c](see BBSGen.Wmat).
Syntax
BBSGen.Poldeg(F,OO,BO,N,W); BBSGen.Poldeg(F:POLY,OO:LIST,BO:LIST,N:INT,W:MAT):VECTOR;
Description
@param A homogeneous polynomial with respect to the arrow grading from the ring K[c], order ideal OO, border BO,number of indeterminates of the polynomial ring K[x_1,...,x_N] and the weight matrix(BBSGen.Wmat).
@return Degree vector of the given homogenous polynomial wrt. the arrow grading.
Example
Use R::=QQ[x[1..2]]; OO:= $apcocoa/borderbasis.Box([1,1]); BO:=$apcocoa/borderbasis.Border(OO); Mu:=Len(OO); Nu:=Len(BO); N:=Len(Indets()); W:=BBSGen.Wmat(OO,BO,N); Use XX::=QQ[c[1..Mu,1..Nu],t[1..N,1..N,1..Mu,1..Mu]]; F:= c[2,4]c[4,1] - c[3,3]c[4,2] - c[2,3] + c[3,4]; BBSGen.Poldeg(F,OO,BO,N,W); R :: Vector(1, 1)