Difference between revisions of "ApCoCoA-1:BBSGen.NonStandPoly"
Andraschko (talk | contribs) m (Andraschko moved page BBSGen.NonStandPoly to ApCoCoA-1:BBSGen.NonStandPoly without leaving a redirect: moving into ApCoCoA namespace) |
m (Bot: Category moved) |
||
Line 66: | Line 66: | ||
<key>BBSGen.NonStandPoly</key> | <key>BBSGen.NonStandPoly</key> | ||
<key>bbsmingensys.NonStandPoly</key> | <key>bbsmingensys.NonStandPoly</key> | ||
− | <wiki-category>Package_bbsmingensys</wiki-category> | + | <wiki-category>ApCoCoA-1:Package_bbsmingensys</wiki-category> |
</command> | </command> |
Revision as of 11:37, 3 October 2020
BBSGen.NonStandPoly
This function computes the non-standard polynomial generators of the vanishing ideal of border basis
scheme with respect to the arrow grading.
Syntax
BBSGen.NonStandPoly(OO,BO,W,N); BBSGen.NonStandPoly(OO:LIST,BO:LIST,W:MATRIX,N:INTEGER):LIST
Description
Let W be the weight matrix with respect to the arrow grading(see BBSGen.Wmat).
Let tau^kl_ij be a polynomials from the generating set Tau of the vanishing ideal of border basis scheme. It is called standard, if deg_W(tau^kl_ij) has exactly one strictly positive component. If tau^kl_ij is not standard then it is called non-standard. This function computes such non-standard polynomials.
@param The order ideal OO, BO border of OO , the number of indeterminates of the polynomial ring K[x_1,...,x_N] and the weight matrix(BBSGen.Wmat).
@return List of polynomials and their degree with respect to the arrow grading.
Example
Use R::=QQ[x[1..2]]; OO:=$apcocoa/borderbasis.Box([1,1]); BO:=$apcocoa/borderbasis.Border(OO); N:=Len(Indets()); W:=BBSGen.Wmat(OO,BO,N); XX::=QQ[c[1..Mu,1..Nu],t[1..N,1..N,1..Mu,1..Mu]]; Use XX; BBSGen.NonStandPoly(OO,BO,W,N); [ c[1,2]c[3,1] + c[1,4]c[4,1] - c[1,3], R :: Vector(1, 2)], [ c[1,1]c[2,2] + c[1,3]c[4,2] - c[1,4], R :: Vector(2, 1)], [ c[1,1]c[2,4] - c[1,2]c[3,3] - c[1,4]c[4,3] + c[1,3]c[4,4], R :: Vector(2, 2)], [c[2,2]c[3,1] + c[2,4]c[4,1] - c[2,3], R :: Vector(1, 1)], [c[2,1]c[2,4] - c[2,2]c[3,3] - c[2,4]c[4,3] + c[2,3]c[4,4] + c[1,4], R :: Vector(2, 1)], [c[2,2]c[3,1] + c[3,3]c[4,2] - c[3,4], R :: Vector(1, 1)], [c[2,4]c[3,1] - c[3,2]c[3,3] - c[3,4]c[4,3] + c[3,3]c[4,4] - c[1,3], R :: Vector(1, 2)], [c[2,4]c[4,1] - c[3,3]c[4,2] - c[2,3] + c[3,4], R :: Vector(1, 1)]]