Difference between revisions of "ApCoCoA-1:SB.IsSagbi"
From ApCoCoAWiki
(New page: <command> <title>SB.IsSagbi</title> <short_description>Checks if a set of polynomials is a SAGBI-basis.</short_description> <syntax> SB.IsSagbi(G:LIST of POLY):BOOL </syntax> <des...) |
m (Bot: Category moved) |
||
Line 72: | Line 72: | ||
<key>sb.issagbi</key> | <key>sb.issagbi</key> | ||
<key>sagbi.issagbi</key> | <key>sagbi.issagbi</key> | ||
− | <wiki-category>Package_sagbi</wiki-category> | + | <wiki-category>ApCoCoA-1:Package_sagbi</wiki-category> |
</command> | </command> |
Revision as of 16:39, 2 October 2020
SB.IsSagbi
Checks if a set of polynomials is a SAGBI-basis.
Syntax
SB.IsSagbi(G:LIST of POLY):BOOL
Description
This function checks if the given list of polynomials G is a SAGBI-basis, i.e. if the conditions of a SAGBI-basis are fulfilled. Then the corresponding boolean value will be returned.
@param G A list of polynomials.
@return The corresponding boolean value.
Example
Use R::=QQ[x,y]; G:=[x-y,x+y]; SB.IsSagbi(G); SB.Sagbi(G); ------------------------------------------------------- -- output: FALSE ------------------------------- -- The result is correct, because a SAGBI-basis of G is the following: [ x - y, x + y, y] ------------------------------- -- Done. -------------------------------
Example
Use R::=QQ[x[1..6]]; Generators:=[-x[4] - x[6], -x[1], x[2]^2 + x[3]^2, -4x[4]^2 - 5/2x[5]^2 + 2x[4]x[6] - 4x[6]^2, -2x[2]x[3]x[4] + x[2]^2x[5] - x[3]^2x[5] + 2x[2]x[3]x[6], -x[2]^2x[4] + x[3]^2x[4] - 2x[2]x[3]x[5] + x[2]^2x[6] - x[3]^2x[6]]; SB.IsSagbi(Generators); -- Computation of a SAGBI-basis Basis:=SB.Sagbi(Generators); SB.IsSagbi(Basis); ------------------------------------------------------- -- output: FALSE ------------------------------- -- Of course the test passes now because the computed SAGBI-basis is -- indeed a SAGBI-basis. TRUE ------------------------------- -- Done. -------------------------------