Difference between revisions of "ApCoCoA-1:Num.SubBBABM"
(Added new parameter) |
m (Bot: Category moved) |
||
Line 66: | Line 66: | ||
<key>num.SubBBABM</key> | <key>num.SubBBABM</key> | ||
<key>numerical.subbbabm</key> | <key>numerical.subbbabm</key> | ||
− | <wiki-category>Package_numerical</wiki-category> | + | <wiki-category>ApCoCoA-1:Package_numerical</wiki-category> |
</command> | </command> |
Revision as of 16:37, 2 October 2020
Num.SubBBABM
Computes a border basis of an almost vanishing sub-ideal for a set of points and an ideal using the Num.BBABM algorithm.
Syntax
Num.SubBBABM(Points:MAT, Epsilon:RAT, Basis:LIST):Object Num.SubBBABM(Points:MAT, Epsilon:RAT, Basis:LIST, Delta:RAT, ForbiddenTerms:LIST, NormalizeType:INT):Object
Description
Please note: The function(s) explained on this page is/are using the ApCoCoAServer. You will have to start the ApCoCoAServer in order to use it/them.
This command computes a border basis of an almost vanishing sub-ideal for a set of points and an ideal using the Num.BBABM algorithm.
The current ring has to be a ring over the rational numbers with a standard-degree
compatible term-ordering. Each row in the matrix Points represents one point, so the number of columns must equal the
number of indeterminates in the current ring.
@param Points The points for which a border basis is computed.
@param Epsilon A positive rational number describing the maximal admissible least squares error for a polynomial. (Bigger values for Epsilon lead to bigger errors of the polynomials evaluated at the point set). Epsilon should be in the interval (0,1). As a rule of thumb, Epsilon is the expected percentage of error on the input points.
@param Basis A set of polynomials in the current ring. This basis defines the ideal in which we compute the basis of the approximate vanishing ideal.
@return A list of two results. First the border basis as a list of polynomials, second the vector space basis of P/I as a list of terms.
The following parameters are optional:
@param Delta A positive rational number which describes the computing precision. In different steps, it is crucial, if a value is 0 or not. The algorithm assumes every value in [-Delta, Delta] to be 0. The default value for Delta is 0.00000000001.
@param ForbiddenTerms A list containing the terms which are not allowed to show up in the order ideal.
@param NormalizeType A integer of the set {1,2,3,4}. The default value is 2. This parameter describes, if and where required the input points are normalized. If NormalizeType equals 1, each coordinate of a point is divided by the maximal absolute value of all coordinates of this point. This ensures that all coordinates of the points are within [-1,1]. With NormalizeType=2 no normalization is done at all. NormalizeType=3 shifts each coordinate to [-1,1], i.e. the minimal coordinate of a point is mapped to -1 and the maximal coordinate to 1, which describes a unique affine mapping. The last option is NormalizeType=4. In this case, each point is normalized by its euclidean norm. Although NormalizeType=3 is in most cases a better choice, the default value is due to backward compatibility 1.
Example
Use P::=QQ[x,y,z]; Points := Mat([[2/3,0,0],[0,1,0],[0,0,1/3]]); R:=Num.SubBBABM(Points, 0.1, [x]); Dec(R[1],2); R[2]; -- CoCoAServer: computing Cpu Time = 0 ------------------------------- [<quotes>1 xz </quotes>, <quotes>1 xy </quotes>, <quotes>1 x^2 -0.66 x </quotes>] ------------------------------- [x] -------------------------------
See also