Difference between revisions of "ApCoCoA-1:NC.IsHomog"
m (Bot: Category moved) |
|||
Line 47: | Line 47: | ||
<key>NC.IsHomog</key> | <key>NC.IsHomog</key> | ||
<key>IsHomog</key> | <key>IsHomog</key> | ||
− | <wiki-category>Package_ncpoly</wiki-category> | + | <wiki-category>ApCoCoA-1:Package_ncpoly</wiki-category> |
</command> | </command> |
Revision as of 16:20, 2 October 2020
NC.IsHomog
Check whether a polynomial or a LIST of polynomials is homogeneous in a non-commutative polynomial ring.
Syntax
NC.IsHomog(F:LIST):BOOL
Description
Please set non-commutative polynomial ring (via the command Use) before calling this function. For more information, please check the relevant commands and functions.
@param F: a non-commutative polynomial or a LIST of non-commutative polynomials. Each polynomial is represented as a LIST of LISTs, and each element in every inner LIST involves only one indeterminate or none (a constant). For example, the polynomial f=2x[2]y[1]x[2]^2-9y[2]x[1]^2x[2]^3+5 is represented as F:=[[2x[1],y[1],x[2]^2], [-9y[2],x[1]^2,x[2]^3], [5]]. The zero polynomial 0 is represented as the empty LIST [].
@return: a BOOL, which is True if F is homogeneous and False otherwise.
Example
USE QQ[x[1..2],y[1..2]]; F1:= [[2x[1],y[1],x[2]^2], [-9y[2],x[1]^2,x[2]^3]]; -- 2x[1]y[1]x[2]^2-9y[2]x[1]^2x[2]^3 F2:= [[2x[1],y[1],x[2]^2], [y[2],x[2]^3]]; -- 2x[1]y[1]x[2]^2+y[2]x[2]^3 F3:= [[2x[1],y[1],x[2]]]; -- 2x[1]y[1]x[2] NC.IsHomog(F1); NC.IsHomog(F2); NC.IsHomog(F3); NC.IsHomog([F1,F2,F3]); NC.IsHomog([F2,F3]); False ------------------------------- True ------------------------------- True ------------------------------- False ------------------------------- True -------------------------------
See also