Difference between revisions of "ApCoCoA-1:CharP.BBasisMutantStrategyF2"
m (Bot: Category moved) |
m (Bot: fixed typo) |
||
Line 51: | Line 51: | ||
<key>bbasismutantstrategyf2</key> | <key>bbasismutantstrategyf2</key> | ||
<key>finite field</key> | <key>finite field</key> | ||
− | <wiki-category> | + | <wiki-category>ApCoCoA-1:Package_charP</wiki-category> |
</command> | </command> |
Revision as of 15:59, 2 October 2020
CharP.BBasisMutantStrategyF2
Computes a Border Basis of a given ideal over F_2.
Syntax
CharP.BBasisMutantStrategyF2(I:IDEAL):LIST of POLY
Description
Please note: The function(s) explained on this page is/are using the ApCoCoAServer. You will have to start the ApCoCoAServer in order to use it/them.
Let I be a zero-dimensional ideal over a polynomial ring with coefficient ring F_2. This function computes a border basis of the zero-dimensional radical ideal generated by I and the field polynomials. Furthermore, it uses the Mutant Strategy for stable span computations.
Please note that this function is a completely ApCoCoALib driven version of the function CharP.MBBasisF2.
@param I A zero-dimensional ideal.
@return A border basis of the zero-dimensional radical ideal generated by the Ideal I and the field polynomials.
Example
Use Z/(2)[x[1..4]]; F:=[ x[1]x[2] + x[2]x[3] + x[2]x[4] + x[3]x[4] + x[1] + x[3] + 1, x[1]x[2] + x[1]x[3] + x[1]x[4] + x[3]x[4] + x[2] + x[3] + 1, x[1]x[2] + x[1]x[3] + x[2]x[3] + x[3]x[4] + x[1] + x[4] + 1, x[1]x[3] + x[2]x[3] + x[1]x[4] + x[2]x[4] + 1 ]; -- Then we compute a border basis with CharP.BBasisMutantStrategyF2(Ideal(F)); -- Result is [x[4] + 1, x[3], x[2] + 1, x[1]]
See also
Introduction to Groebner Basis in CoCoA