Difference between revisions of "Package sagbi/SB.IsInSubalgebra"

From ApCoCoAWiki
m
Line 10: Line 10:
 
</syntax>
 
</syntax>
 
   <description>
 
   <description>
This function takes a polynomials <tt>f</tt> and a list of polynomials <tt>G</tt> and checks whether <tt>F</tt> is in the algebra generated by the polynomials in <tt>G</tt>. For the function
+
This function takes a polynomials <tt>f</tt> and a list of polynomials <tt>G</tt> and checks whether <tt>F</tt> is in the algebra generated by the polynomials in <tt>G</tt>.
 
<itemize>
 
<itemize>
 
   <item>@param <em>f</em> A polynomial.</item>
 
   <item>@param <em>f</em> A polynomial.</item>

Revision as of 10:49, 27 September 2020

This article is about a function in ApCoCoA-2.0. If you are looking for the ApCoCoA-1.0 version of it, see ApCoCoA:SB.IsInSubalgebra.

SB.IsInSubalgebra

Tests whether a polynomial is in a subalgebra.

Syntax

SB.IsInSubalgebra(f:POLY, G:LIST of POLY):BOOL

Description

This function takes a polynomials f and a list of polynomials G and checks whether F is in the algebra generated by the polynomials in G.

  • @param f A polynomial.

  • @param G A list of polynomials which generate a subalgebra.

  • @return true if f is in the subalgebra generated by G, false elsewise.

Example

Use QQ[x[1..2]];
G := [x[1]-x[2], x[1]*x[2]-x[2]^2, x[1]*x[2]^2];
SB.IsInSubalgebra(x[1]*x[2]^4-x[2]^5, G);
-----------------------------------------------------------------------------
true

Example

Use QQ[y[1..3]];
G := [y[1]^2-y[3]^2, y[1]*y[2]+y[3]^2, y[2]^2-2*y[3]^2];
SB.IsInSubalgebra(y[3]^4, G);
-----------------------------------------------------------------------------
false