Difference between revisions of "Package sagbi/SB.SAGBI"

From ApCoCoAWiki
(Created page with "<command> <title>SB.SAGBI</title> <short_description>Computes a finite SAGBI-basis of a subalgebra if existing.</short_description> <syntax> SB.SAGBI(G:LIST of POLY):LI...")
 
Line 26: Line 26:
 
</example>
 
</example>
 
   </description>
 
   </description>
<see>SB.IsSagbi</see>
+
<!-- <see>SB.IsSagbi</see> -->
<see>SB.IsSagbiOf</see>
+
<!-- <see>SB.IsSagbiOf</see> -->
 
   <types>
 
   <types>
 
     <type>sagbi</type>
 
     <type>sagbi</type>

Revision as of 15:23, 26 September 2020

SB.SAGBI

Computes a finite SAGBI-basis of a subalgebra if existing.

Syntax

SB.SAGBI(G:LIST of POLY):LIST of POLY

Description

This function computes a finite SAGBI-basis of a subalgebra S generated by the polynomials of the list G, if a finite SAGBI-basis of S is existing. Then a list of polynomials is returned which form a SAGBI-basis of S. Otherwise the computation runs until it is interrupted.

  • @param G A list of polynomials which generates a subalgebra.

  • @return A list of polynomials which form a finite SAGBI-basis of the subalgebra generated by G.

Example

Use QQ[x[1..3]];
S := SB.SAGBI([x[1]^2-x[3]^2,x[1]*x[2]+x[3]^2,x[2]^2-2*x[3]^2]);
indent(S);
-----------------------------------------------------------------------------
[
  x[2]^2 -2*x[3]^2,
  x[1]*x[2] +x[3]^2,
  x[1]^2 -x[3]^2,
  x[1]^2*x[3]^2 +x[1]*x[2]*x[3]^2 +(1/2)*x[2]^2*x[3]^2 +(-1/2)*x[3]^4
]