Difference between revisions of "ApCoCoA-1:Torus Knot Group"
From ApCoCoAWiki
StrohmeierB (talk | contribs) (New page: === <div id="Torus Knot Group">Torus Knot Group</div> === ==== Description ==== And has the following presentation: ==== Reference ==== Micha...) |
StrohmeierB (talk | contribs) |
||
(14 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
=== <div id="Torus Knot Group">[[:ApCoCoA:Symbolic data#Torus Knot Group|Torus Knot Group]]</div> === | === <div id="Torus Knot Group">[[:ApCoCoA:Symbolic data#Torus Knot Group|Torus Knot Group]]</div> === | ||
==== Description ==== | ==== Description ==== | ||
− | And has the following presentation: | + | The Torus Knot Group is described by a space curve r(phi). |
− | + | (cos(q*phi)+2)*cos(p*phi) | |
+ | With r(phi) = ( (cos(q*phi)+2)*sin(p*phi) ) 0<=phi<=2pi | ||
+ | sin(q*phi) | ||
+ | By interlacing a string through the hole of a torus p times with q revolutions, a (p,q)-torus knot results. The ends of the string are joined together. The variables p,q are relatively prime. And has the following presentation: | ||
+ | tng(a,b)= < a,b| a^p = b^q = 1 > | ||
==== Reference ==== | ==== Reference ==== | ||
Michael Eisermann, Knotengruppen-Darstellungen und | Michael Eisermann, Knotengruppen-Darstellungen und | ||
− | Invarianten von endlichem Typ, Rheinischen Friedrich-Wilhelms-Universität, Bonn, 2000 | + | Invarianten von endlichem Typ, Rheinischen Friedrich-Wilhelms-Universität, Bonn, 2000; Johannes Diernke, Universität Oldenburg, Oldenburg, 2010/2011: [http://www.informatik.uni-oldenburg.de/~trigger/content/opengl/opengl_course/slides/2010-JOGL-08-Torus-Knoten.pdf]; [http://mathworld.wolfram.com/TorusKnot.html] |
==== Computation ==== | ==== Computation ==== | ||
Line 13: | Line 17: | ||
// Define the variable q,p of the Torusknotengroup | // Define the variable q,p of the Torusknotengroup | ||
+ | //ggT(q,p)=1 | ||
MEMORY.P := 2; | MEMORY.P := 2; | ||
MEMORY.Q := 3; | MEMORY.Q := 3; | ||
− | + | ||
Use ZZ/(2)[a,b,c,d]; | Use ZZ/(2)[a,b,c,d]; | ||
NC.SetOrdering("LLEX"); | NC.SetOrdering("LLEX"); | ||
Line 38: | Line 43: | ||
Gb:=NC.GB(Relations,31,1,100,1000); | Gb:=NC.GB(Relations,31,1,100,1000); | ||
Gb; | Gb; | ||
+ | |||
====Examples in Symbolic Data Format==== | ====Examples in Symbolic Data Format==== | ||
<FREEALGEBRA createdAt="2014-07-03" createdBy="strohmeier"> | <FREEALGEBRA createdAt="2014-07-03" createdBy="strohmeier"> | ||
Line 52: | Line 58: | ||
<Comment>The partial LLex Gb has 198 elements</Comment> | <Comment>The partial LLex Gb has 198 elements</Comment> | ||
<Comment>Torusknotengruppe_p2q3</Comment> | <Comment>Torusknotengruppe_p2q3</Comment> | ||
− | <Comment>Torusknotengruppe_p2q3 is isomorph to " | + | <Comment>Torusknotengruppe_p2q3 is isomorph to "Trefoil Knot Group"</Comment> |
</FREEALGEBRA> | </FREEALGEBRA> |
Latest revision as of 08:27, 20 July 2014
Description
The Torus Knot Group is described by a space curve r(phi).
(cos(q*phi)+2)*cos(p*phi) With r(phi) = ( (cos(q*phi)+2)*sin(p*phi) ) 0<=phi<=2pi sin(q*phi)
By interlacing a string through the hole of a torus p times with q revolutions, a (p,q)-torus knot results. The ends of the string are joined together. The variables p,q are relatively prime. And has the following presentation:
tng(a,b)= < a,b| a^p = b^q = 1 >
Reference
Michael Eisermann, Knotengruppen-Darstellungen und Invarianten von endlichem Typ, Rheinischen Friedrich-Wilhelms-Universität, Bonn, 2000; Johannes Diernke, Universität Oldenburg, Oldenburg, 2010/2011: [1]; [2]
Computation
/*Use the ApCoCoA package ncpoly.*/ // Define the variable q,p of the Torusknotengroup //ggT(q,p)=1 MEMORY.P := 2; MEMORY.Q := 3; Use ZZ/(2)[a,b,c,d]; NC.SetOrdering("LLEX"); Define CreateRelationsTorusknoten() Relations:=[]; //add the inverse relations Append(Relations,[[a,c],[1]]); Append(Relations,[[c,a],[1]]); Append(Relations,[[b,d],[1]]); Append(Relations,[[d,b],[1]]); // add the relation a^p = b^q Append(Relations,[[a^MEMORY.P],[b^MEMORY.Q]]); Return Relations; EndDefine; Relations:=CreateRelationsTorusknoten(); Relations; Gb:=NC.GB(Relations,31,1,100,1000); Gb;
Examples in Symbolic Data Format
<FREEALGEBRA createdAt="2014-07-03" createdBy="strohmeier"> <vars>a,b,c,d</vars> <uptoDeg>14</uptoDeg> <basis> <ncpoly>a*c-1</ncpoly> <ncpoly>c*a-1</ncpoly> <ncpoly>b*d-1</ncpoly> <ncpoly>d*b-1</ncpoly> <Comment>Relation: a^p=b^q</Comment> <ncpoly>a*a-b*b*b</ncpoly> </basis> <Comment>The partial LLex Gb has 198 elements</Comment> <Comment>Torusknotengruppe_p2q3</Comment> <Comment>Torusknotengruppe_p2q3 is isomorph to "Trefoil Knot Group"</Comment> </FREEALGEBRA>