Difference between revisions of "ApCoCoA-1:Other2 groups"
From ApCoCoAWiki
StrohmeierB (talk | contribs) |
StrohmeierB (talk | contribs) |
||
(2 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
− | === <div id="Other2_groups">[[:ApCoCoA:Symbolic data#Other_groups|Other | + | === <div id="Other2_groups">[[:ApCoCoA:Symbolic data#Other_groups|Other Groups]]</div> === |
==== Description ==== | ==== Description ==== | ||
The first group is called Rosenberger-Monster and is the largest finite generalized triangle group. | The first group is called Rosenberger-Monster and is the largest finite generalized triangle group. | ||
Line 44: | Line 44: | ||
<Comment>(abababab^{2}ab^{2}abab^{2}ab^{2})^2 = 1 </Comment> | <Comment>(abababab^{2}ab^{2}abab^{2}ab^{2})^2 = 1 </Comment> | ||
</basis> | </basis> | ||
− | <Comment> The | + | <Comment> The partial LLex Gb has 3 elements</Comment> |
<Comment>Other_groups2</Comment> | <Comment>Other_groups2</Comment> | ||
</FREEALGEBRA> | </FREEALGEBRA> | ||
+ | |||
==== Computation of H ==== | ==== Computation of H ==== | ||
Line 80: | Line 81: | ||
<Comment>relation: (abababab^{2}abab^{2}ab^{2})^2 = 1</Comment> | <Comment>relation: (abababab^{2}abab^{2}ab^{2})^2 = 1</Comment> | ||
</basis> | </basis> | ||
− | <Comment>The LLex has 249 elements</Comment> | + | <Comment>The partial LLex Gb has 249 elements</Comment> |
<Comment>Other_groups3</Comment> | <Comment>Other_groups3</Comment> | ||
</FREEALGEBRA> | </FREEALGEBRA> |
Latest revision as of 21:08, 22 April 2014
Description
The first group is called Rosenberger-Monster and is the largest finite generalized triangle group. A finite representation of G is given below:
G = <a,b | a^2 = b^3 = (abababab^{2}ab^{2}abab^{2}ab^{2})^2 = 1>
The second group is already infinite and denoted by H:
H = <a,b | a^2 = b^3 = (abababab^{2}abab^{2}ab^{2})^2 = 1>
Reference
On the Rosenberger Monster Robert Fitzgerald Morse, Department of Electrical Engineering and Computer Science, University of Evansville IN 47722 USA
Computation of G
/*Use the ApCoCoA package ncpoly.*/ Use ZZ/(2)[a,b]; NC.SetOrdering("LLEX"); Define CreateRelationsOther2() Relations:=[]; // add the relations a^2 = b^3 = 1 Append(Relations,[[a,a],[1]]); Append(Relations,[[b,b,b],[1]]); // add the relation (abababab^{2}ab^{2}abab^{2}ab^{2})^2 = 1 Append(Relations,[[a,b,a,b,a,b,a,b^2,a,b^2,a,b,a,b^2,a,b^2,a,b,a,b,a,b,a,b^2,a,b^2,a,b,a,b^2,a,b^2],[1]]); Return Relations; EndDefine; Relations:=CreateRelationsOther2(); Gb:=NC.GB(Relations,31,1,100,1000);
G in Symbolic Data Format
<FREEALGEBRA createdAt="2014-02-27" createdBy="strohmeier"> <vars>a,b</vars> <uptoDeg>39</uptoDeg> <basis> <ncpoly>a*a-1</ncpoly> <ncpoly>b*b*b-1</ncpoly> <Comment>polynomials to define inverse elements</Comment> <ncpoly>(a*b*a*b*a*b*a*b*b*a*b*b*a*b*a*b*b*a*b*b)^2-1</ncpoly> <Comment>(abababab^{2}ab^{2}abab^{2}ab^{2})^2 = 1 </Comment> </basis> <Comment> The partial LLex Gb has 3 elements</Comment> <Comment>Other_groups2</Comment> </FREEALGEBRA>
Computation of H
/*Use the ApCoCoA package ncpoly.*/ Use ZZ/(2)[a,b]; NC.SetOrdering("LLEX"); Define CreateRelationsOther3() Relations:=[]; // add the relations a^2 = b^3 = 1 Append(Relations,[[a,a],[1]]); Append(Relations,[[b,b,b],[1]]); // add the relation (abababab^{2}abab^{2}ab^{2})^2 = 1 Append(Relations,[[a,b,a,b,a,b,a,b^2,a,b,a,b^2,a,b^2,a,b,a,b,a,b,a,b^2,a,b,a,b^2,a,b^2],[1]]); Return Relations; EndDefine; Relations:=CreateRelationsOther3(); Gb:=NC.GB(Relations,31,1,100,1000);
H in Symbolic Data Format
<FREEALGEBRA createdAt="2014-02-27" createdBy="strohmeier"> <vars>a,b</vars> <uptoDeg>34</uptoDeg> <basis> <ncpoly>a*a-1</ncpoly> <ncpoly>b*b*b-1</ncpoly> <ncpoly>(a*b*a*b*a*b*a*b*b*a*b*a*b*b*a*b*b)^2-1</ncpoly> <Comment>relation: (abababab^{2}abab^{2}ab^{2})^2 = 1</Comment> </basis> <Comment>The partial LLex Gb has 249 elements</Comment> <Comment>Other_groups3</Comment> </FREEALGEBRA>