Difference between revisions of "ApCoCoA-1:Other2 groups"
From ApCoCoAWiki
StrohmeierB (talk | contribs) |
|||
(7 intermediate revisions by 2 users not shown) | |||
Line 1: | Line 1: | ||
− | === <div id="Other2_groups">[[:ApCoCoA:Symbolic data#Other_groups|Other | + | === <div id="Other2_groups">[[:ApCoCoA:Symbolic data#Other_groups|Other Groups]]</div> === |
==== Description ==== | ==== Description ==== | ||
The first group is called Rosenberger-Monster and is the largest finite generalized triangle group. | The first group is called Rosenberger-Monster and is the largest finite generalized triangle group. | ||
Line 14: | Line 14: | ||
/*Use the ApCoCoA package ncpoly.*/ | /*Use the ApCoCoA package ncpoly.*/ | ||
− | |||
Use ZZ/(2)[a,b]; | Use ZZ/(2)[a,b]; | ||
NC.SetOrdering("LLEX"); | NC.SetOrdering("LLEX"); | ||
+ | |||
Define CreateRelationsOther2() | Define CreateRelationsOther2() | ||
Relations:=[]; | Relations:=[]; | ||
Line 23: | Line 23: | ||
Append(Relations,[[a,a],[1]]); | Append(Relations,[[a,a],[1]]); | ||
Append(Relations,[[b,b,b],[1]]); | Append(Relations,[[b,b,b],[1]]); | ||
− | + | ||
− | Append(Relations,[[a,b,a,b,a,b,a,b | + | // add the relation (abababab^{2}ab^{2}abab^{2}ab^{2})^2 = 1 |
+ | Append(Relations,[[a,b,a,b,a,b,a,b^2,a,b^2,a,b,a,b^2,a,b^2,a,b,a,b,a,b,a,b^2,a,b^2,a,b,a,b^2,a,b^2],[1]]); | ||
+ | |||
Return Relations; | Return Relations; | ||
EndDefine; | EndDefine; | ||
Relations:=CreateRelationsOther2(); | Relations:=CreateRelationsOther2(); | ||
− | + | Gb:=NC.GB(Relations,31,1,100,1000); | |
+ | |||
+ | ==== G in Symbolic Data Format==== | ||
+ | <FREEALGEBRA createdAt="2014-02-27" createdBy="strohmeier"> | ||
+ | <vars>a,b</vars> | ||
+ | <uptoDeg>39</uptoDeg> | ||
+ | <basis> | ||
+ | <ncpoly>a*a-1</ncpoly> | ||
+ | <ncpoly>b*b*b-1</ncpoly> | ||
+ | <Comment>polynomials to define inverse elements</Comment> | ||
+ | <ncpoly>(a*b*a*b*a*b*a*b*b*a*b*b*a*b*a*b*b*a*b*b)^2-1</ncpoly> | ||
+ | <Comment>(abababab^{2}ab^{2}abab^{2}ab^{2})^2 = 1 </Comment> | ||
+ | </basis> | ||
+ | <Comment> The partial LLex Gb has 3 elements</Comment> | ||
+ | <Comment>Other_groups2</Comment> | ||
+ | </FREEALGEBRA> | ||
==== Computation of H ==== | ==== Computation of H ==== | ||
Line 37: | Line 54: | ||
Use ZZ/(2)[a,b]; | Use ZZ/(2)[a,b]; | ||
NC.SetOrdering("LLEX"); | NC.SetOrdering("LLEX"); | ||
+ | |||
Define CreateRelationsOther3() | Define CreateRelationsOther3() | ||
Relations:=[]; | Relations:=[]; | ||
Line 43: | Line 61: | ||
Append(Relations,[[a,a],[1]]); | Append(Relations,[[a,a],[1]]); | ||
Append(Relations,[[b,b,b],[1]]); | Append(Relations,[[b,b,b],[1]]); | ||
− | + | ||
− | Append(Relations,[[a,b,a,b,a,b,a,b | + | // add the relation (abababab^{2}abab^{2}ab^{2})^2 = 1 |
+ | Append(Relations,[[a,b,a,b,a,b,a,b^2,a,b,a,b^2,a,b^2,a,b,a,b,a,b,a,b^2,a,b,a,b^2,a,b^2],[1]]); | ||
+ | |||
Return Relations; | Return Relations; | ||
EndDefine; | EndDefine; | ||
Relations:=CreateRelationsOther3(); | Relations:=CreateRelationsOther3(); | ||
− | + | Gb:=NC.GB(Relations,31,1,100,1000); | |
+ | |||
+ | ====H in Symbolic Data Format==== | ||
+ | <FREEALGEBRA createdAt="2014-02-27" createdBy="strohmeier"> | ||
+ | <vars>a,b</vars> | ||
+ | <uptoDeg>34</uptoDeg> | ||
+ | <basis> | ||
+ | <ncpoly>a*a-1</ncpoly> | ||
+ | <ncpoly>b*b*b-1</ncpoly> | ||
+ | <ncpoly>(a*b*a*b*a*b*a*b*b*a*b*a*b*b*a*b*b)^2-1</ncpoly> | ||
+ | <Comment>relation: (abababab^{2}abab^{2}ab^{2})^2 = 1</Comment> | ||
+ | </basis> | ||
+ | <Comment>The partial LLex Gb has 249 elements</Comment> | ||
+ | <Comment>Other_groups3</Comment> | ||
+ | </FREEALGEBRA> |
Latest revision as of 21:08, 22 April 2014
Description
The first group is called Rosenberger-Monster and is the largest finite generalized triangle group. A finite representation of G is given below:
G = <a,b | a^2 = b^3 = (abababab^{2}ab^{2}abab^{2}ab^{2})^2 = 1>
The second group is already infinite and denoted by H:
H = <a,b | a^2 = b^3 = (abababab^{2}abab^{2}ab^{2})^2 = 1>
Reference
On the Rosenberger Monster Robert Fitzgerald Morse, Department of Electrical Engineering and Computer Science, University of Evansville IN 47722 USA
Computation of G
/*Use the ApCoCoA package ncpoly.*/ Use ZZ/(2)[a,b]; NC.SetOrdering("LLEX"); Define CreateRelationsOther2() Relations:=[]; // add the relations a^2 = b^3 = 1 Append(Relations,[[a,a],[1]]); Append(Relations,[[b,b,b],[1]]); // add the relation (abababab^{2}ab^{2}abab^{2}ab^{2})^2 = 1 Append(Relations,[[a,b,a,b,a,b,a,b^2,a,b^2,a,b,a,b^2,a,b^2,a,b,a,b,a,b,a,b^2,a,b^2,a,b,a,b^2,a,b^2],[1]]); Return Relations; EndDefine; Relations:=CreateRelationsOther2(); Gb:=NC.GB(Relations,31,1,100,1000);
G in Symbolic Data Format
<FREEALGEBRA createdAt="2014-02-27" createdBy="strohmeier"> <vars>a,b</vars> <uptoDeg>39</uptoDeg> <basis> <ncpoly>a*a-1</ncpoly> <ncpoly>b*b*b-1</ncpoly> <Comment>polynomials to define inverse elements</Comment> <ncpoly>(a*b*a*b*a*b*a*b*b*a*b*b*a*b*a*b*b*a*b*b)^2-1</ncpoly> <Comment>(abababab^{2}ab^{2}abab^{2}ab^{2})^2 = 1 </Comment> </basis> <Comment> The partial LLex Gb has 3 elements</Comment> <Comment>Other_groups2</Comment> </FREEALGEBRA>
Computation of H
/*Use the ApCoCoA package ncpoly.*/ Use ZZ/(2)[a,b]; NC.SetOrdering("LLEX"); Define CreateRelationsOther3() Relations:=[]; // add the relations a^2 = b^3 = 1 Append(Relations,[[a,a],[1]]); Append(Relations,[[b,b,b],[1]]); // add the relation (abababab^{2}abab^{2}ab^{2})^2 = 1 Append(Relations,[[a,b,a,b,a,b,a,b^2,a,b,a,b^2,a,b^2,a,b,a,b,a,b,a,b^2,a,b,a,b^2,a,b^2],[1]]); Return Relations; EndDefine; Relations:=CreateRelationsOther3(); Gb:=NC.GB(Relations,31,1,100,1000);
H in Symbolic Data Format
<FREEALGEBRA createdAt="2014-02-27" createdBy="strohmeier"> <vars>a,b</vars> <uptoDeg>34</uptoDeg> <basis> <ncpoly>a*a-1</ncpoly> <ncpoly>b*b*b-1</ncpoly> <ncpoly>(a*b*a*b*a*b*a*b*b*a*b*a*b*b*a*b*b)^2-1</ncpoly> <Comment>relation: (abababab^{2}abab^{2}ab^{2})^2 = 1</Comment> </basis> <Comment>The partial LLex Gb has 249 elements</Comment> <Comment>Other_groups3</Comment> </FREEALGEBRA>