Difference between revisions of "ApCoCoA-1:SpecialLinearPrime group"
From ApCoCoAWiki
StrohmeierB (talk | contribs) (New page: === <div id="special_linear_group with prime p">Special Linear Group with prime p</div> === ==== Description ==== For p is prim...) |
StrohmeierB (talk | contribs) |
||
(2 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
− | === <div id="special_linear_group with prime p">[[:ApCoCoA:Symbolic data#special_linear_group with prime p|Special Linear Group with | + | === <div id="special_linear_group with prime p">[[:ApCoCoA:Symbolic data#special_linear_group with prime p|Special Linear Group with Prime p]]</div> === |
==== Description ==== | ==== Description ==== | ||
For p is prime has the Special Linear Group with prime p the following presentation: | For p is prime has the Special Linear Group with prime p the following presentation: | ||
Line 7: | Line 7: | ||
not found yet | not found yet | ||
==== Computation ==== | ==== Computation ==== | ||
+ | /*Use the ApCoCoA package ncpoly.*/ | ||
+ | |||
+ | // set the variables k,p,t | ||
+ | // Note that p have to be prime | ||
+ | MEMORY.K:=3; | ||
+ | MEMORY.P:=2; | ||
+ | MEMORY.T:=5; | ||
+ | Use ZZ/(2)[x,y,a,b]; | ||
+ | NC.SetOrdering("LLEX"); | ||
+ | |||
+ | Define CreateRelationsSpeciallineargroupprime() | ||
+ | Relations:=[]; | ||
+ | |||
+ | // add the inverse relations | ||
+ | Append(Relations,[[x,a],[1]]); | ||
+ | Append(Relations,[[a,x],[1]]); | ||
+ | Append(Relations,[[y,b],[1]]); | ||
+ | Append(Relations,[[b,y],[1]]); | ||
+ | |||
+ | // add the relation x^2 = (xy)^3 | ||
+ | Append(Relations,[[x,x],[x,y,x,y,x,y]]); | ||
+ | |||
+ | // add the relation ((((x*y)^4)*x*y^t)^2)*(y^p)*(x^(2k))-1 | ||
+ | Append(Relations,[[x,y,x,y,x,y,x,y,x,y^(MEMORY.T),x,y,x,y,x,y,x,y,x,y^(MEMORY.T),y^(MEMORY.P),x^(2*MEMORY.K)],[1]]); | ||
+ | Return Relations; | ||
+ | EndDefine; | ||
+ | |||
+ | Relations:=CreateRelationsSpeciallineargroupprime(); | ||
+ | Relations; | ||
+ | |||
+ | Gb:=NC.GB(Relations,31,1,100,1000); | ||
+ | Gb; | ||
+ | |||
====Example in Symbolic Data Format==== | ====Example in Symbolic Data Format==== | ||
+ | <FREEALGEBRA createdAt="2014-01-20" createdBy="strohmeier"> | ||
+ | <vars>x,y,a,b</vars> | ||
+ | <uptoDeg>12</uptoDeg> | ||
+ | <basis> | ||
+ | <ncpoly>x*x-(x*y)^3</ncpoly> | ||
+ | <ncpoly>((((x*y)^4)*x*y^5)^2)*(y^2)*(x^(2*3))-1</ncpoly> | ||
+ | </basis> | ||
+ | <Comment>The partial LLEX Gb has 285 elements</Comment> | ||
+ | <Comment>Special_Linear_group with prime p_k3p2t5</Comment> | ||
+ | </FREEALGEBRA> |
Latest revision as of 21:03, 22 April 2014
Description
For p is prime has the Special Linear Group with prime p the following presentation:
SL_2(p) = <x,y | x^{2} =(xy)^{3},(xy^{4}xy^{t})^{2}y^{p}x^{2k}=1>
Reference
not found yet
Computation
/*Use the ApCoCoA package ncpoly.*/ // set the variables k,p,t // Note that p have to be prime MEMORY.K:=3; MEMORY.P:=2; MEMORY.T:=5; Use ZZ/(2)[x,y,a,b]; NC.SetOrdering("LLEX"); Define CreateRelationsSpeciallineargroupprime() Relations:=[]; // add the inverse relations Append(Relations,[[x,a],[1]]); Append(Relations,[[a,x],[1]]); Append(Relations,[[y,b],[1]]); Append(Relations,[[b,y],[1]]); // add the relation x^2 = (xy)^3 Append(Relations,[[x,x],[x,y,x,y,x,y]]); // add the relation ((((x*y)^4)*x*y^t)^2)*(y^p)*(x^(2k))-1 Append(Relations,[[x,y,x,y,x,y,x,y,x,y^(MEMORY.T),x,y,x,y,x,y,x,y,x,y^(MEMORY.T),y^(MEMORY.P),x^(2*MEMORY.K)],[1]]); Return Relations; EndDefine; Relations:=CreateRelationsSpeciallineargroupprime(); Relations; Gb:=NC.GB(Relations,31,1,100,1000); Gb;
Example in Symbolic Data Format
<FREEALGEBRA createdAt="2014-01-20" createdBy="strohmeier"> <vars>x,y,a,b</vars> <uptoDeg>12</uptoDeg> <basis> <ncpoly>x*x-(x*y)^3</ncpoly> <ncpoly>((((x*y)^4)*x*y^5)^2)*(y^2)*(x^(2*3))-1</ncpoly> </basis> <Comment>The partial LLEX Gb has 285 elements</Comment> <Comment>Special_Linear_group with prime p_k3p2t5</Comment> </FREEALGEBRA>