Difference between revisions of "ApCoCoA-1:Ikosaeder group"
From ApCoCoAWiki
StrohmeierB (talk | contribs) |
StrohmeierB (talk | contribs) |
||
Line 1: | Line 1: | ||
− | === <div id="Ikosaeder group">[[:ApCoCoA:Symbolic data#Ikosaeder_group|Ikosaeder | + | === <div id="Ikosaeder group">[[:ApCoCoA:Symbolic data#Ikosaeder_group|Ikosaeder Group]]</div> === |
==== Description ==== | ==== Description ==== | ||
The Ikosaeder group has the following representation: | The Ikosaeder group has the following representation: |
Latest revision as of 21:00, 22 April 2014
Description
The Ikosaeder group has the following representation:
I = <a,b | a^2 = b^3 = (ab)^5 = 1>
Reference
Eric W. Weisstein: Math World, Icosahedral Group
Computation
/*Use the ApCoCoA package ncpoly.*/ Use ZZ/(2)[a,b]; NC.SetOrdering("LLEX"); Define CreateRelationsIkosaeder() Relations:=[]; // add the relation a^2 = 1 Append(Relations,[[a^2],[1]]); // add the relation b^3 = 1 Append(Relations,[[b^3],[1]]); // add the relation (ab)^5 = 1 Append(Relations,[[a,b,a,b,a,b,a,b,a,b],[1]]); Return Relations; EndDefine; Relations:=CreateRelationsIkosaeder(); Gb:=NC.GB(Relations);
Example in Symbolic Data Format
<FREEALGEBRA createdAt="2014-01-20" createdBy="strohmeier"> <vars>a,b</vars> <basis> <ncpoly>a*a-1</ncpoly> <ncpoly>b*b*b-1</ncpoly> <ncpoly>a*b*a*b*a*b*a*b*a*b-1</ncpoly> </basis> <Comment>Ikosaeder_group</Comment> </FREEALGEBRA>