Difference between revisions of "ApCoCoA-1:Ikosaeder group"

From ApCoCoAWiki
 
(One intermediate revision by the same user not shown)
Line 1: Line 1:
=== <div id="Ikosaeder group">[[:ApCoCoA:Symbolic data#Ikosaeder_group|Ikosaeder group]]</div> ===
+
=== <div id="Ikosaeder group">[[:ApCoCoA:Symbolic data#Ikosaeder_group|Ikosaeder Group]]</div> ===
 
==== Description ====
 
==== Description ====
 
The Ikosaeder group has the following representation:
 
The Ikosaeder group has the following representation:
Line 29: Line 29:
 
   Relations:=CreateRelationsIkosaeder();
 
   Relations:=CreateRelationsIkosaeder();
 
   Gb:=NC.GB(Relations);
 
   Gb:=NC.GB(Relations);
 +
====Example in Symbolic Data Format====
 +
  <FREEALGEBRA createdAt="2014-01-20" createdBy="strohmeier">
 +
  <vars>a,b</vars>
 +
  <basis>
 +
  <ncpoly>a*a-1</ncpoly>
 +
  <ncpoly>b*b*b-1</ncpoly>
 +
  <ncpoly>a*b*a*b*a*b*a*b*a*b-1</ncpoly>
 +
  </basis>
 +
  <Comment>Ikosaeder_group</Comment>
 +
  </FREEALGEBRA>

Latest revision as of 21:00, 22 April 2014

Description

The Ikosaeder group has the following representation:

  I = <a,b | a^2 = b^3 = (ab)^5 = 1>

Reference

Eric W. Weisstein: Math World, Icosahedral Group

Computation

 /*Use the ApCoCoA package ncpoly.*/
 
 Use ZZ/(2)[a,b];
 NC.SetOrdering("LLEX");

 Define CreateRelationsIkosaeder()
   Relations:=[];
   // add the relation a^2 = 1 
   Append(Relations,[[a^2],[1]]);
   
   // add the relation b^3 = 1
   Append(Relations,[[b^3],[1]]);
   
   // add the relation (ab)^5 = 1
   Append(Relations,[[a,b,a,b,a,b,a,b,a,b],[1]]);
   
   Return Relations;
 EndDefine;
 
 Relations:=CreateRelationsIkosaeder();
 Gb:=NC.GB(Relations);

Example in Symbolic Data Format

 <FREEALGEBRA createdAt="2014-01-20" createdBy="strohmeier">
 	<vars>a,b</vars>
 	<basis>
 	<ncpoly>a*a-1</ncpoly>
 	<ncpoly>b*b*b-1</ncpoly>
 	<ncpoly>a*b*a*b*a*b*a*b*a*b-1</ncpoly>
 	</basis>
 	<Comment>Ikosaeder_group</Comment>
 </FREEALGEBRA>