Difference between revisions of "ApCoCoA-1:OrdinaryTetrahedron groups"
From ApCoCoAWiki
StrohmeierB (talk | contribs) |
|||
(6 intermediate revisions by 3 users not shown) | |||
Line 1: | Line 1: | ||
− | === <div id="Ordinary_tetrahedron_groups">[[:ApCoCoA:Symbolic data#Ordinary_tetrahedron_groups|Ordinary Tetrahedron | + | === <div id="Ordinary_tetrahedron_groups">[[:ApCoCoA:Symbolic data#Ordinary_tetrahedron_groups|Ordinary Tetrahedron Groups]]</div> === |
==== Description ==== | ==== Description ==== | ||
An Ordinary Tetrahedron group is a group with a representation of the form | An Ordinary Tetrahedron group is a group with a representation of the form | ||
G(e_1,e_2,e_3,f_1,f_2,f_3) = <x,y,z | x^{e_1} = y^{e_2} = z^{e_3} = (xy^{-1})^{f_1} = (yz^{-1})^{f_2} = (zx^{-1})^{f_3} = 1> | G(e_1,e_2,e_3,f_1,f_2,f_3) = <x,y,z | x^{e_1} = y^{e_2} = z^{e_3} = (xy^{-1})^{f_1} = (yz^{-1})^{f_2} = (zx^{-1})^{f_3} = 1> | ||
− | + | ||
− | Modern Algebra | + | ==== Reference ==== |
+ | Edjvet, Rosenberger, Stille, Thomas, "On certain generalized tetrahedon groups", Computational And Geometric Aspects Of Modern Algebra. | ||
==== Computation ==== | ==== Computation ==== | ||
Line 16: | Line 17: | ||
MEMORY.F2:=3; | MEMORY.F2:=3; | ||
MEMORY.F3:=3; | MEMORY.F3:=3; | ||
− | + | ||
− | |||
Use ZZ/(2)[x,y,z]; | Use ZZ/(2)[x,y,z]; | ||
NC.SetOrdering("LLEX"); | NC.SetOrdering("LLEX"); | ||
+ | |||
Define CreateRelationsDicyclic() | Define CreateRelationsDicyclic() | ||
Relations:=[]; | Relations:=[]; | ||
Line 38: | Line 39: | ||
EndFor; | EndFor; | ||
Append(Relations,[RelationA,[1]]); | Append(Relations,[RelationA,[1]]); | ||
+ | |||
// add the relation (yz^{-1})^{f_2} | // add the relation (yz^{-1})^{f_2} | ||
RelationB:=[]; | RelationB:=[]; | ||
Line 53: | Line 55: | ||
EndFor; | EndFor; | ||
Append(Relations,[RelationC,[1]]); | Append(Relations,[RelationC,[1]]); | ||
− | EndIf; | + | EndIf; |
+ | |||
Return Relations; | Return Relations; | ||
EndDefine; | EndDefine; | ||
Line 59: | Line 62: | ||
Relations:=CreateRelationsDicyclic(); | Relations:=CreateRelationsDicyclic(); | ||
Relations; | Relations; | ||
+ | |||
If Size(Relations) > 0 Then | If Size(Relations) > 0 Then | ||
− | + | Gb:=NC.GB(Relations,31,1,100,1000); | |
− | Size( | + | Size(Gb); |
EndIf; | EndIf; | ||
+ | |||
+ | ====Example in Symbolic Data Format==== | ||
+ | <FREEALGEBRA createdAt="2014-03-02" createdBy="strohmeier"> | ||
+ | <vars>x,y,z</vars> | ||
+ | <uptoDeg>15</uptoDeg> | ||
+ | <basis> | ||
+ | <ncpoly>x^3-1</ncpoly> | ||
+ | <ncpoly>y^3-1</ncpoly> | ||
+ | <ncpoly>z^3-1</ncpoly> | ||
+ | <ncpoly>((x*y^(3-1))^(3))-1</ncpoly> | ||
+ | <ncpoly>((y*z^(3-1))^(3))-1</ncpoly> | ||
+ | <ncpoly>((z*x^(3-1))^(3))-1</ncpoly> | ||
+ | </basis> | ||
+ | <Comment>The partial LLex Gb has 140 elements</Comment> | ||
+ | <Comment>Ordinary_Tetrahedron_group_3</Comment> | ||
+ | </FREEALGEBRA> |
Latest revision as of 20:50, 22 April 2014
Description
An Ordinary Tetrahedron group is a group with a representation of the form
G(e_1,e_2,e_3,f_1,f_2,f_3) = <x,y,z | x^{e_1} = y^{e_2} = z^{e_3} = (xy^{-1})^{f_1} = (yz^{-1})^{f_2} = (zx^{-1})^{f_3} = 1>
Reference
Edjvet, Rosenberger, Stille, Thomas, "On certain generalized tetrahedon groups", Computational And Geometric Aspects Of Modern Algebra.
Computation
/*Use the ApCoCoA package ncpoly.*/ // Variables of Ordinary Tetrahedon group MEMORY.E1:=3; MEMORY.E2:=3; MEMORY.E3:=3; MEMORY.F1:=3; MEMORY.F2:=3; MEMORY.F3:=3; Use ZZ/(2)[x,y,z]; NC.SetOrdering("LLEX"); Define CreateRelationsDicyclic() Relations:=[]; If MEMORY.E1 < 2 Or MEMORY.E2 < 2 Or MEMORY.E3 < 2 Or MEMORY.F1 < 2 Or MEMORY.F2 < 2 Or MEMORY.F3 < 2 Then Output:="Wrong Input! Please check that E_i and F_i are greater than 1"; Print(Output); Else // add the relations x^{e_1} = 1, y^{e_2} = 1 and z^{e_3} = 1 Append(Relations,[[x^(MEMORY.E1)],[1]]); Append(Relations,[[y^(MEMORY.E2)],[1]]); Append(Relations,[[z^(MEMORY.E3)],[1]]); // add the relation (xy^{-1})^{f_1} RelationA:=[]; For Index1 := 1 To MEMORY.F1 Do Append(RelationA,x); Append(RelationA,y^(MEMORY.E2-1)); EndFor; Append(Relations,[RelationA,[1]]); // add the relation (yz^{-1})^{f_2} RelationB:=[]; For Index2 := 1 To MEMORY.F2 Do Append(RelationB,y); Append(RelationB,z^(MEMORY.E3-1)); EndFor; Append(Relations,[RelationB,[1]]); // add the relation (zx^{-1})^{f_3} RelationC:=[]; For Index3 := 1 To MEMORY.F3 Do Append(RelationC,z); Append(RelationC,x^(MEMORY.E1-1)); EndFor; Append(Relations,[RelationC,[1]]); EndIf; Return Relations; EndDefine; Relations:=CreateRelationsDicyclic(); Relations; If Size(Relations) > 0 Then Gb:=NC.GB(Relations,31,1,100,1000); Size(Gb); EndIf;
Example in Symbolic Data Format
<FREEALGEBRA createdAt="2014-03-02" createdBy="strohmeier"> <vars>x,y,z</vars> <uptoDeg>15</uptoDeg> <basis> <ncpoly>x^3-1</ncpoly> <ncpoly>y^3-1</ncpoly> <ncpoly>z^3-1</ncpoly> <ncpoly>((x*y^(3-1))^(3))-1</ncpoly> <ncpoly>((y*z^(3-1))^(3))-1</ncpoly> <ncpoly>((z*x^(3-1))^(3))-1</ncpoly> </basis> <Comment>The partial LLex Gb has 140 elements</Comment> <Comment>Ordinary_Tetrahedron_group_3</Comment> </FREEALGEBRA>