|
|
(One intermediate revision by the same user not shown) |
Line 1: |
Line 1: |
− | === <div id="Cyclic_groups">[[:ApCoCoA:Symbolic data#Cyclic_groups|Cyclic groups]]</div> === | + | === <div id="Cyclic_groups">[[:ApCoCoA:Symbolic data#Cyclic_groups|Cyclic Groups]]</div> === |
| ==== Description ==== | | ==== Description ==== |
| Every cyclic group is generated by a single element a. If n is finite the group is isomorphic to Z/nZ, otherwise it can be | | Every cyclic group is generated by a single element a. If n is finite the group is isomorphic to Z/nZ, otherwise it can be |
Line 33: |
Line 33: |
| // RESULT for MEMORY.N = 5 :: [[[a^5], [1]]] | | // RESULT for MEMORY.N = 5 :: [[[a^5], [1]]] |
| | | |
− | ==== Examples in Symbolic Data Format ==== | + | ==== Example in Symbolic Data Format ==== |
− | =====Cyclic group 5=====
| |
| <FREEALGEBRA createdAt="2014-03-02" createdBy="strohmeier"> | | <FREEALGEBRA createdAt="2014-03-02" createdBy="strohmeier"> |
| <vars>a</vars> | | <vars>a</vars> |
Line 41: |
Line 40: |
| </basis> | | </basis> |
| <Comment>Cyclic_group_5</Comment> | | <Comment>Cyclic_group_5</Comment> |
− | </FREEALGEBRA>
| |
− | =====Cyclic group 6=====
| |
− | <FREEALGEBRA createdAt="2014-03-02" createdBy="strohmeier">
| |
− | <vars>a</vars>
| |
− | <basis>
| |
− | <ncpoly>a^6-1</ncpoly>
| |
− | </basis>
| |
− | <Comment>Cyclic_group_6</Comment>
| |
− | </FREEALGEBRA>
| |
− | =====Cyclic group 7=====
| |
− | <FREEALGEBRA createdAt="2014-03-02" createdBy="strohmeier">
| |
− | <vars>a</vars>
| |
− | <basis>
| |
− | <ncpoly>a^7-1</ncpoly>
| |
− | </basis>
| |
− | <Comment>Cyclic_group_7</Comment>
| |
− | </FREEALGEBRA>
| |
− | =====Cyclic group 8=====
| |
− | <FREEALGEBRA createdAt="2014-03-02" createdBy="strohmeier">
| |
− | <vars>a</vars>
| |
− | <basis>
| |
− | <ncpoly>a^8-1</ncpoly>
| |
− | </basis>
| |
− | <Comment>Cyclic_group_8</Comment>
| |
− | </FREEALGEBRA>
| |
− | =====Cyclic group 9=====
| |
− | <FREEALGEBRA createdAt="2014-03-02" createdBy="strohmeier">
| |
− | <vars>a</vars>
| |
− | <basis>
| |
− | <ncpoly>a^9-1</ncpoly>
| |
− | </basis>
| |
− | <Comment>Cyclic_group_9</Comment>
| |
− | </FREEALGEBRA>
| |
− | =====Cyclic group 10=====
| |
− | <FREEALGEBRA createdAt="2014-03-02" createdBy="strohmeier">
| |
− | <vars>a</vars>
| |
− | <basis>
| |
− | <ncpoly>a^(10)-1</ncpoly>
| |
− | </basis>
| |
− | <Comment>Cyclic_group_10</Comment>
| |
− | </FREEALGEBRA>
| |
− | =====Cyclic group 11=====
| |
− | <FREEALGEBRA createdAt="2014-03-02" createdBy="strohmeier">
| |
− | <vars>a</vars>
| |
− | <basis>
| |
− | <ncpoly>a^(11)-1</ncpoly>
| |
− | </basis>
| |
− | <Comment>Cyclic_group_11</Comment>
| |
− | </FREEALGEBRA>
| |
− | =====Cyclic group 12=====
| |
− | <FREEALGEBRA createdAt="2014-03-02" createdBy="strohmeier">
| |
− | <vars>a</vars>
| |
− | <basis>
| |
− | <ncpoly>a^(12)-1</ncpoly>
| |
− | </basis>
| |
− | <Comment>Cyclic_group_12</Comment>
| |
− | </FREEALGEBRA>
| |
− | =====Cyclic group 13=====
| |
− | <FREEALGEBRA createdAt="2014-03-02" createdBy="strohmeier">
| |
− | <vars>a</vars>
| |
− | <basis>
| |
− | <ncpoly>a^(13)-1</ncpoly>
| |
− | </basis>
| |
− | <Comment>Cyclic_group_13</Comment>
| |
− | </FREEALGEBRA>
| |
− | =====Cyclic group 14=====
| |
− | <FREEALGEBRA createdAt="2014-03-02" createdBy="strohmeier">
| |
− | <vars>a</vars>
| |
− | <basis>
| |
− | <ncpoly>a^(14)-1</ncpoly>
| |
− | </basis>
| |
− | <Comment>Cyclic_group_14</Comment>
| |
− | </FREEALGEBRA>
| |
− | =====Cyclic group 15=====
| |
− | <FREEALGEBRA createdAt="2014-03-02" createdBy="strohmeier">
| |
− | <vars>a</vars>
| |
− | <basis>
| |
− | <ncpoly>a^(15)-1</ncpoly>
| |
− | </basis>
| |
− | <Comment>Cyclic_group_15</Comment>
| |
− | </FREEALGEBRA>
| |
− | =====Cyclic group 16=====
| |
− | <FREEALGEBRA createdAt="2014-03-04" createdBy="strohmeier">
| |
− | <vars>a</vars>
| |
− | <basis>
| |
− | <ncpoly>a^(16)-1</ncpoly>
| |
− | </basis>
| |
− | <Comment>Cyclic_group_16</Comment>
| |
− | </FREEALGEBRA>
| |
− | =====Cyclic group 17=====
| |
− | <FREEALGEBRA createdAt="2014-03-04" createdBy="strohmeier">
| |
− | <vars>a</vars>
| |
− | <basis>
| |
− | <ncpoly>a^(17)-1</ncpoly>
| |
− | </basis>
| |
− | <Comment>Cyclic_group_17</Comment>
| |
− | </FREEALGEBRA>
| |
− | =====Cyclic group 18=====
| |
− | <FREEALGEBRA createdAt="2014-03-04" createdBy="strohmeier">
| |
− | <vars>a</vars>
| |
− | <basis>
| |
− | <ncpoly>a^(18)-1</ncpoly>
| |
− | </basis>
| |
− | <Comment>Cyclic_group_18</Comment>
| |
− | </FREEALGEBRA>
| |
− | =====Cyclic group 19=====
| |
− | <FREEALGEBRA createdAt="2014-03-04" createdBy="strohmeier">
| |
− | <vars>a</vars>
| |
− | <basis>
| |
− | <ncpoly>a^(19)-1</ncpoly>
| |
− | </basis>
| |
− | <Comment>Cyclic_group_19</Comment>
| |
− | </FREEALGEBRA>
| |
− | =====Cyclic group 20=====
| |
− | <FREEALGEBRA createdAt="2014-03-04" createdBy="strohmeier">
| |
− | <vars>a</vars>
| |
− | <basis>
| |
− | <ncpoly>a^(20)-1</ncpoly>
| |
− | </basis>
| |
− | <Comment>Cyclic_group_20</Comment>
| |
− | </FREEALGEBRA>
| |
− | =====Cyclic group 21=====
| |
− | <FREEALGEBRA createdAt="2014-03-04" createdBy="strohmeier">
| |
− | <vars>a</vars>
| |
− | <basis>
| |
− | <ncpoly>a^(21)-1</ncpoly>
| |
− | </basis>
| |
− | <Comment>Cyclic_group_21</Comment>
| |
− | </FREEALGEBRA>
| |
− | =====Cyclic group 22=====
| |
− | <FREEALGEBRA createdAt="2014-03-04" createdBy="strohmeier">
| |
− | <vars>a</vars>
| |
− | <basis>
| |
− | <ncpoly>a^(22)-1</ncpoly>
| |
− | </basis>
| |
− | <Comment>Cyclic_group_22</Comment>
| |
− | </FREEALGEBRA>
| |
− | =====Cyclic group 23=====
| |
− | <FREEALGEBRA createdAt="2014-03-04" createdBy="strohmeier">
| |
− | <vars>a</vars>
| |
− | <basis>
| |
− | <ncpoly>a^(23)-1</ncpoly>
| |
− | </basis>
| |
− | <Comment>Cyclic_group_23</Comment>
| |
| </FREEALGEBRA> | | </FREEALGEBRA> |
Description
Every cyclic group is generated by a single element a. If n is finite the group is isomorphic to Z/nZ, otherwise it can be
interpreted as Z with the addition of integers as the group operation. For every cyclic group there only exists one subgroup containing a, the group itself.
C(n) = <a | a^{n} = 1>
Reference
Joseph A. Gallian, Contemporary Abstract Algebra (4th ed.), Boston: Houghton Mifflin, Chapter 4, 1998.
Computation
/*Use the ApCoCoA package ncpoly.*/
// Number of cyclic group
MEMORY.N:=5;
Use ZZ/(2)[a];
NC.SetOrdering("LLEX");
Define CreateRelationsCyclic()
Relations:=[];
// Add relation a^n = 1
Append(Relations,[[a^MEMORY.N],[1]]);
Return Relations;
EndDefine;
Relations:=CreateRelationsCyclic();
Relations;
// Compute a Groebner Basis.
Gb:=NC.GB(Relations);
Gb;
// RESULT for MEMORY.N = 5 :: [[[a^5], [1]]]
Example in Symbolic Data Format
<FREEALGEBRA createdAt="2014-03-02" createdBy="strohmeier">
<vars>a</vars>
<basis>
<ncpoly>a^5-1</ncpoly>
</basis>
<Comment>Cyclic_group_5</Comment>
</FREEALGEBRA>