Difference between revisions of "ApCoCoA-1:Baumslag groups"
From ApCoCoAWiki
StrohmeierB (talk | contribs) |
StrohmeierB (talk | contribs) |
||
(2 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
− | === <div id=" | + | === <div id="Baumslag_Groups">[[:ApCoCoA:Symbolic data#Baumslag_groups|Baumslag Groups]]</div> === |
==== Description ==== | ==== Description ==== | ||
Baumslag-Solitar groups have the following presentation. | Baumslag-Solitar groups have the following presentation. | ||
Line 54: | Line 54: | ||
<ncpoly>b1*a1^2-a1^3*b1</ncpoly> | <ncpoly>b1*a1^2-a1^3*b1</ncpoly> | ||
</basis> | </basis> | ||
− | <Comment>The | + | <Comment>The partial LLex Gb has 208 elements</Comment> |
<Comment>Baumslag-Solitar_group1</Comment> | <Comment>Baumslag-Solitar_group1</Comment> | ||
</FREEALGEBRA> | </FREEALGEBRA> |
Latest revision as of 12:13, 19 April 2014
Description
Baumslag-Solitar groups have the following presentation.
BS(m,n)<a, b | ba^{m} = a^{n}b> where m, n are natural numbers
Reference
G. Baumslag and D. Solitar, Some two generator one-relator non-Hopfian groups, Bull. Amer. Math. Soc. , 689 (1962) pp. 199–201.
Computation
We enumerate partial Groebner bases for the Baumslag-Solitar groups as follows.
/*Use the ApCoCoA package ncpoly.*/ Use ZZ/(2)[a[1..2],b[1..2]]; NC.SetOrdering("LLEX"); Define CreateRelations() A1:=[[a[1],a[2]],[1]]; A2:=[[a[2],a[1]],[1]]; B1:=[[b[1],b[2]],[1]]; B2:=[[b[2],b[1]],[1]]; R:=[[b[1],a[1]^(2)],[a[1]^(3),b[1]]]; Return [A1,A2,B1,B2,R]; EndDefine; -- Relation ba^2=a^3b. Change 2 and 3 in "()" to make another relation G:=CreateRelations(); -- Enumerate a partial Groebner basis (see NC.GB for more details) NC.GB(G,31,1,100,1000);
/*Use the ApCoCoA package gbmr.*/ -- See NCo.BGB for more details on the parameters DB, LB and OFlag. Define BS(M,N,DB,LB,OFlag) $apcocoa/gbmr.SetX("aAbB"); $apcocoa/gbmr.SetOrdering("LLEX"); G:= [["aA",""],["Aa",""],["bB",""],["bB",""]]; BA:= "b"; AB:= "b"; For I:= 1 To ARGV[1] Do BA:= BA + "a"; EndFor; For I:= 1 To ARGV[2] Do AB:= "a" + Ab; EndFor; Append(G,[BA,AB]); Return $apcocoa/gbmr.BGB(G,DB,LB,OFlag); EndDefine;
Example in Symbolic Data Format
<FREEALGEBRA createdAt="2014-03-12" createdBy="strohmeier"> <vars>a1,a2,b1,b2</vars> <uptoDeg>9</uptoDeg> <basis> <ncpoly>a1*a2-1</ncpoly> <ncpoly>a2*a1-1</ncpoly> <ncpoly>b1*b2-1</ncpoly> <ncpoly>b2*b1-1</ncpoly> <ncpoly>b1*a1^2-a1^3*b1</ncpoly> </basis> <Comment>The partial LLex Gb has 208 elements</Comment> <Comment>Baumslag-Solitar_group1</Comment> </FREEALGEBRA>