Difference between revisions of "ApCoCoA-1:Fibonacci groups"
From ApCoCoAWiki
StrohmeierB (talk | contribs) |
|||
Line 78: | Line 78: | ||
Gb:=NC.GB(Relations,31,1,100,1000); | Gb:=NC.GB(Relations,31,1,100,1000); | ||
Gb; | Gb; | ||
+ | |||
+ | ====Example in Symbolic Data Format==== | ||
+ | <FREEALGEBRA createdAt="2014-03-11" createdBy="strohmeier"> | ||
+ | <vars>x1,x2,x3,x4,x5,x6,x7</vars> | ||
+ | <uptoDeg>6</uptoDeg> | ||
+ | <basis> | ||
+ | <ncpoly>x1*x2-x3</ncpoly> | ||
+ | <ncpoly>x2*x3-x4</ncpoly> | ||
+ | <ncpoly>x3*x4-x5</ncpoly> | ||
+ | <ncpoly>x4*x5-x6</ncpoly> | ||
+ | <ncpoly>x5*x6-x7</ncpoly> | ||
+ | <ncpoly>x6*x7-x1</ncpoly> | ||
+ | <ncpoly>x7*x1-x2</ncpoly> | ||
+ | </basis> | ||
+ | <Comment>The LLexGb has 423 elements</Comment> | ||
+ | <Comment>Fibonacci_group_7</Comment> | ||
+ | </FREEALGEBRA> |
Revision as of 17:00, 11 March 2014
Description
Fibonacci groups are related to the inductive definition of the Fibonacci numbers f_{i} + f_{i+1} = f_{i+2} where f_{1} = f_{2} = 1. For a natural number m <= 7 this groups are finite (see table below).
F(2,m) = <x_{1},...,x_{m} | x_{i}x_{i+1} = x_{i+2}>
m | isomorphic group | order |
1 | trivial group | 1 |
2 | trivial group | 1 |
3 | Quaternion group | 8 |
4 | cyclic group Z5 | 5 |
5 | cyclic group Z11 | 11 |
7 | cyclic group Z29 | 29 |
Reference
R. Thomas, “The Fibonacci groups F(2,2m)”, Bull. London Math. Soc.,21, No. 5, 463-465 (1989).
Computation
/*Use the ApCoCoA package ncpoly.*/ // Number of fibonacci group MEMORY.N:=7; Use ZZ/(2)[x[1..MEMORY.N],y[1..MEMORY.N]]; NC.SetOrdering("LLEX"); Define CreateRelationsFibonacci() Relations:=[]; // add the relations of the inverse elements For Index1 := 1 To MEMORY.N Do //Append(Relations,[[x[Index1],y[Index1]],[1]]); //Append(Relations,[[y[Index1],x[Index1]],[1]]); EndFor; // add the relations x_{i}x_{i+1} = x_{i+2} For Index2 := 1 To MEMORY.N -2 Do Append(Relations,[[x[Index2],x[Index2+1]],[x[Index2+2]]]); EndFor; Append(Relations,[[x[MEMORY.N-1],x[MEMORY.N]],[x[1]]]); Append(Relations,[[x[MEMORY.N],x[1]],[x[2]]]); Return Relations; EndDefine; Relations:=CreateRelationsFibonacci(); Relations; Gb:=NC.GB(Relations,31,1,100,1000); Gb;
Example in Symbolic Data Format
<FREEALGEBRA createdAt="2014-03-11" createdBy="strohmeier"> <vars>x1,x2,x3,x4,x5,x6,x7</vars> <uptoDeg>6</uptoDeg> <basis> <ncpoly>x1*x2-x3</ncpoly> <ncpoly>x2*x3-x4</ncpoly> <ncpoly>x3*x4-x5</ncpoly> <ncpoly>x4*x5-x6</ncpoly> <ncpoly>x5*x6-x7</ncpoly> <ncpoly>x6*x7-x1</ncpoly> <ncpoly>x7*x1-x2</ncpoly> </basis> <Comment>The LLexGb has 423 elements</Comment> <Comment>Fibonacci_group_7</Comment> </FREEALGEBRA>