Difference between revisions of "ApCoCoA-1:Other2 groups"
From ApCoCoAWiki
StrohmeierB (talk | contribs) |
|||
Line 33: | Line 33: | ||
Gb:=NC.GB(Relations,31,1,100,1000); | Gb:=NC.GB(Relations,31,1,100,1000); | ||
+ | ==== G in Symbolic Data Format==== | ||
+ | <FREEALGEBRA createdAt="2014-02-27" createdBy="strohmeier"> | ||
+ | <vars>a,b</vars> | ||
+ | <uptoDeg>39</uptoDeg> | ||
+ | <basis> | ||
+ | <ncpoly>a*a-1</ncpoly> | ||
+ | <ncpoly>b*b*b-1</ncpoly> | ||
+ | <Comment>polynomials to define inverse elements</Comment> | ||
+ | <ncpoly>(a*b*a*b*a*b*a*b*b*a*b*b*a*b*a*b*b*a*b*b)^2-1</ncpoly> | ||
+ | <Comment>(abababab^{2}ab^{2}abab^{2}ab^{2})^2 = 1 </Comment> | ||
+ | </basis> | ||
+ | <Comment> The LLexGB has 3 elements</Comment> | ||
+ | <Comment>Other_groups2</Comment> | ||
+ | </FREEALGEBRA> | ||
==== Computation of H ==== | ==== Computation of H ==== | ||
Revision as of 10:53, 7 March 2014
Description
The first group is called Rosenberger-Monster and is the largest finite generalized triangle group. A finite representation of G is given below:
G = <a,b | a^2 = b^3 = (abababab^{2}ab^{2}abab^{2}ab^{2})^2 = 1>
The second group is already infinite and denoted by H:
H = <a,b | a^2 = b^3 = (abababab^{2}abab^{2}ab^{2})^2 = 1>
Reference
On the Rosenberger Monster Robert Fitzgerald Morse, Department of Electrical Engineering and Computer Science, University of Evansville IN 47722 USA
Computation of G
/*Use the ApCoCoA package ncpoly.*/ Use ZZ/(2)[a,b]; NC.SetOrdering("LLEX"); Define CreateRelationsOther2() Relations:=[]; // add the relations a^2 = b^3 = 1 Append(Relations,[[a,a],[1]]); Append(Relations,[[b,b,b],[1]]); // add the relation (abababab^{2}ab^{2}abab^{2}ab^{2})^2 = 1 Append(Relations,[[a,b,a,b,a,b,a,b^2,a,b^2,a,b,a,b^2,a,b^2,a,b,a,b,a,b,a,b^2,a,b^2,a,b,a,b^2,a,b^2],[1]]); Return Relations; EndDefine; Relations:=CreateRelationsOther2(); Gb:=NC.GB(Relations,31,1,100,1000);
G in Symbolic Data Format
<FREEALGEBRA createdAt="2014-02-27" createdBy="strohmeier"> <vars>a,b</vars> <uptoDeg>39</uptoDeg> <basis> <ncpoly>a*a-1</ncpoly> <ncpoly>b*b*b-1</ncpoly> <Comment>polynomials to define inverse elements</Comment> <ncpoly>(a*b*a*b*a*b*a*b*b*a*b*b*a*b*a*b*b*a*b*b)^2-1</ncpoly> <Comment>(abababab^{2}ab^{2}abab^{2}ab^{2})^2 = 1 </Comment> </basis> <Comment> The LLexGB has 3 elements</Comment> <Comment>Other_groups2</Comment> </FREEALGEBRA>
Computation of H
/*Use the ApCoCoA package ncpoly.*/ Use ZZ/(2)[a,b]; NC.SetOrdering("LLEX"); Define CreateRelationsOther3() Relations:=[]; // add the relations a^2 = b^3 = 1 Append(Relations,[[a,a],[1]]); Append(Relations,[[b,b,b],[1]]); // add the relation (abababab^{2}abab^{2}ab^{2})^2 = 1 Append(Relations,[[a,b,a,b,a,b,a,b^2,a,b,a,b^2,a,b^2,a,b,a,b,a,b,a,b^2,a,b,a,b^2,a,b^2],[1]]); Return Relations; EndDefine; Relations:=CreateRelationsOther3(); Gb:=NC.GB(Relations,31,1,100,1000);