Difference between revisions of "ApCoCoA-1:Modular group"
From ApCoCoAWiki
(New page: === <div id="Modular_group">Modular group</div> === ==== Description ==== The Modular group has the following representation: PSL(2,Z) = <a,b | a...) |
StrohmeierB (talk | contribs) |
||
Line 30: | Line 30: | ||
Relations:=CreateRelationsModular(); | Relations:=CreateRelationsModular(); | ||
GB:=NC.GB(Relations); | GB:=NC.GB(Relations); | ||
+ | ====Example in Symbolic Data Format==== | ||
+ | <FREEALGEBRA createdAt="2014-01-24" createdBy="strohmeier"> | ||
+ | <vars>a,b,d</vars> | ||
+ | <basis> | ||
+ | <ncpoly>b*d-1</ncpoly> | ||
+ | <ncpoly>d*b-1</ncpoly> | ||
+ | <ncpoly>a*a-1</ncpoly> | ||
+ | <ncpoly>(a*b)^3-1</ncpoly> | ||
+ | </basis> | ||
+ | <Comment>Modular_group</Comment> | ||
+ | </FREEALGEBRA> |
Revision as of 17:58, 6 March 2014
Description
The Modular group has the following representation:
PSL(2,Z) = <a,b | a^2 = (ab)^3 = 1 >
Reference
Platonic tilings of Riemann surfaces: The Modular Group, Gerard Westendorp
Computation
/*Use the ApCoCoA package ncpoly.*/ // a^{-1} is a and b is invers to d Use ZZ/(2)[a,b,d]; NC.SetOrdering("LLEX"); Define CreateRelationsModular() Relations:=[]; // add the invers relations Append(Relations,[[b,d],[1]]); Append(Relations,[[d,b],[1]]); // add the relation a^2 = 1 Append(Relations,[[a^2],[1]]); // add the relation (ab)^3 = 1 Append(Relations,[[a,b,a,b,a,b],[1]]); Return Relations; EndDefine; Relations:=CreateRelationsModular(); GB:=NC.GB(Relations);
Example in Symbolic Data Format
<FREEALGEBRA createdAt="2014-01-24" createdBy="strohmeier"> <vars>a,b,d</vars> <basis> <ncpoly>b*d-1</ncpoly> <ncpoly>d*b-1</ncpoly> <ncpoly>a*a-1</ncpoly> <ncpoly>(a*b)^3-1</ncpoly> </basis> <Comment>Modular_group</Comment> </FREEALGEBRA>