Difference between revisions of "ApCoCoA-1:Ikosaeder group"
From ApCoCoAWiki
StrohmeierB (talk | contribs) |
StrohmeierB (talk | contribs) |
||
Line 29: | Line 29: | ||
Relations:=CreateRelationsIkosaeder(); | Relations:=CreateRelationsIkosaeder(); | ||
Gb:=NC.GB(Relations); | Gb:=NC.GB(Relations); | ||
+ | ====Example in Symbolic Data Format==== | ||
+ | <FREEALGEBRA createdAt="2014-01-20" createdBy="strohmeier"> | ||
+ | <vars>a,b</vars> | ||
+ | <basis> | ||
+ | <ncpoly>a*a-1</ncpoly> | ||
+ | <ncpoly>b*b*b-1</ncpoly> | ||
+ | <ncpoly>a*b*a*b*a*b*a*b*a*b-1</ncpoly> | ||
+ | </basis> | ||
+ | <Comment>Ikosaeder_group</Comment> | ||
+ | </FREEALGEBRA> |
Revision as of 17:50, 6 March 2014
Description
The Ikosaeder group has the following representation:
I = <a,b | a^2 = b^3 = (ab)^5 = 1>
Reference
Eric W. Weisstein: Math World, Icosahedral Group
Computation
/*Use the ApCoCoA package ncpoly.*/ Use ZZ/(2)[a,b]; NC.SetOrdering("LLEX"); Define CreateRelationsIkosaeder() Relations:=[]; // add the relation a^2 = 1 Append(Relations,[[a^2],[1]]); // add the relation b^3 = 1 Append(Relations,[[b^3],[1]]); // add the relation (ab)^5 = 1 Append(Relations,[[a,b,a,b,a,b,a,b,a,b],[1]]); Return Relations; EndDefine; Relations:=CreateRelationsIkosaeder(); Gb:=NC.GB(Relations);
Example in Symbolic Data Format
<FREEALGEBRA createdAt="2014-01-20" createdBy="strohmeier"> <vars>a,b</vars> <basis> <ncpoly>a*a-1</ncpoly> <ncpoly>b*b*b-1</ncpoly> <ncpoly>a*b*a*b*a*b*a*b*a*b-1</ncpoly> </basis> <Comment>Ikosaeder_group</Comment> </FREEALGEBRA>