Difference between revisions of "ApCoCoA-1:SpecialLinear group"
From ApCoCoAWiki
Line 16: | Line 16: | ||
Define CreateRelationsSpecialLinear() | Define CreateRelationsSpecialLinear() | ||
Relations:=[]; | Relations:=[]; | ||
+ | |||
// add the invers relations | // add the invers relations | ||
Append(Relations,[[a,c],[1]]); | Append(Relations,[[a,c],[1]]); | ||
Line 32: | Line 33: | ||
Relations:=CreateRelationsSpecialLinear(); | Relations:=CreateRelationsSpecialLinear(); | ||
− | + | Gb:=NC.GB(Relations,31,1,100,1000); |
Revision as of 03:35, 22 September 2013
Description
The special linear group over Z is the group of all n x n matrices with coefficients in Z which has a determinant equals 0. A simple representation is given by:
SL_2(Z) = <a,b | aba = bab, (aba)^4 = 1 >
Reference
Andrew Baker: An introduction to matrix groups and their applications
Computation
/*Use the ApCoCoA package ncpoly.*/ // a is invers to c, b is invers to d Use ZZ/(2)[a,b,c,d]; NC.SetOrdering("LLEX"); Define CreateRelationsSpecialLinear() Relations:=[]; // add the invers relations Append(Relations,[[a,c],[1]]); Append(Relations,[[c,a],[1]]); Append(Relations,[[b,d],[1]]); Append(Relations,[[d,b],[1]]); // add the relation aba = bab Append(Relations,[[a,b,a],[b,a,b]]); // add the relation (aba)^4 = 1 Append(Relations,[[a,b,a,a,b,a,a,b,a,a,b,a],[1]]); Return Relations; EndDefine; Relations:=CreateRelationsSpecialLinear(); Gb:=NC.GB(Relations,31,1,100,1000);