Difference between revisions of "ApCoCoA-1:Dicyclic groups"

From ApCoCoAWiki
Line 20: Line 20:
 
   Define CreateRelationsDicyclic()
 
   Define CreateRelationsDicyclic()
 
     Relations:=[];
 
     Relations:=[];
      
+
   
 +
     // Add the relation a^{2n} = 1
 +
    Append(Relations, [[a^(2*MEMORY.N)], [-1]]);
 +
   
 
     // Add the relation a^{n} = b^2
 
     // Add the relation a^{n} = b^2
 
     Append(Relations, [[a^(MEMORY.N)], [-b,b]]);
 
     Append(Relations, [[a^(MEMORY.N)], [-b,b]]);
   
 
    // Add the relation a^{2n} = 1
 
    Append(Relations, [[a^(2*MEMORY.N)], [-1]]);
 
 
    
 
    
 
     // Add the relation b^{-1}ab = a^{-1}
 
     // Add the relation b^{-1}ab = a^{-1}
Line 32: Line 32:
 
     Return Relations;
 
     Return Relations;
 
   EndDefine;
 
   EndDefine;
 +
 
 +
  Relations:=CreateRelationsDicyclic();
 +
  Relations;
 +
 +
  Gb:=NC.GB(Relations);
 +
  Gb;

Revision as of 08:42, 23 August 2013

Description

The dicyclic groups are non-abelian groups with order 4n. For n = 2 the dicyclic group is isomporphic to the quarternion group Q. Note that every element of this groups can be written uniquely as a^k x^j for 0 < k < 2n and j = 0 or 1.

 Dic(n) = <a,b | a^{2n} = 1, a^{n} = b^{2}, b^{-1}ab = a^{-1}>

Reference

Coxeter, H. S. M., "7.1 The Cyclic and Dicyclic groups", Regular Complex Polytopes, Cambridge University, 1974.

Computation

 /*Use the ApCoCoA package ncpoly.*/
 
 // Number of Dicyclic group (note that  the order is 4N)
 MEMORY.N:=5;
 
 Use ZZ/(2)[a,b];
 NC.SetOrdering("LLEX");
 
 Define CreateRelationsDicyclic()
   Relations:=[];
    
   // Add the relation a^{2n} = 1
   Append(Relations, [[a^(2*MEMORY.N)], [-1]]);
    
   // Add the relation a^{n} = b^2
   Append(Relations, [[a^(MEMORY.N)], [-b,b]]);
  
   // Add the relation b^{-1}ab = a^{-1}
   Append(Relations, [[b^(3),a,b],[a^(2*MEMORY.N-1)]]);
 
   Return Relations;
 EndDefine;
 
 Relations:=CreateRelationsDicyclic();
 Relations;
 Gb:=NC.GB(Relations);
 Gb;