Difference between revisions of "ApCoCoA-1:Baumslag-Gersten groups"

From ApCoCoAWiki
Line 1: Line 1:
 
=== <div id="Baumslag-Gersten_groups">[[:ApCoCoA:Symbolic data#Baumslag_groups|Baumslag groups]]</div> ===
 
=== <div id="Baumslag-Gersten_groups">[[:ApCoCoA:Symbolic data#Baumslag_groups|Baumslag groups]]</div> ===
 
==== Description ====
 
==== Description ====
The Baumslag-Gersten groups have a Dehn function growing faster than any fixed iterated tower of exponentials and can
+
The Baumslag-Gersten groups have a Dehn function growing faster than any fixed iterated tower of exponentials and can be represented as:
be represented as:
 
 
   BG = <a,b | (b^{-1}a^{-1}b)a(b^{-1}a^{-1}b) = a^{2}>
 
   BG = <a,b | (b^{-1}a^{-1}b)a(b^{-1}a^{-1}b) = a^{2}>
 
(Reference: A. N. Platonov, An isoparametric function of the Baumslag-Gersten group. (in Russian.) Vestnik Moskov. Univ. Ser. I Mat. Mekh. 2004, , no. 3, pp. 12–17; translation in: Moscow University Mathematics Bulletin, vol. 59 (2004), no. 3, pp. 12–17 (2005).)
 
(Reference: A. N. Platonov, An isoparametric function of the Baumslag-Gersten group. (in Russian.) Vestnik Moskov. Univ. Ser. I Mat. Mekh. 2004, , no. 3, pp. 12–17; translation in: Moscow University Mathematics Bulletin, vol. 59 (2004), no. 3, pp. 12–17 (2005).)
  
 
==== Computation ====
 
==== Computation ====
We enumerate partial Groebner bases for the Baumslag-Solitar groups as follows.
+
We enumerate partial Groebner bases for the Baumslag-Gersten groups as follows.
 
  /*Use the ApCoCoA package ncpoly.*/
 
  /*Use the ApCoCoA package ncpoly.*/
 
    
 
    
Line 14: Line 13:
 
   Define CreateRelationsBaumslagGersten()
 
   Define CreateRelationsBaumslagGersten()
 
     Relations:=[];
 
     Relations:=[];
     // add the relation of the invers elements ac = ca = 1 and bd = db = 1
+
     // add the relations of the inverse elements ac = ca = 1 and bd = db = 1
 
     Append(Relations,[[a,c],[1]]);
 
     Append(Relations,[[a,c],[1]]);
 
     Append(Relations,[[c,a],[1]]);
 
     Append(Relations,[[c,a],[1]]);

Revision as of 07:07, 23 August 2013

Description

The Baumslag-Gersten groups have a Dehn function growing faster than any fixed iterated tower of exponentials and can be represented as:

 BG = <a,b | (b^{-1}a^{-1}b)a(b^{-1}a^{-1}b) = a^{2}>

(Reference: A. N. Platonov, An isoparametric function of the Baumslag-Gersten group. (in Russian.) Vestnik Moskov. Univ. Ser. I Mat. Mekh. 2004, , no. 3, pp. 12–17; translation in: Moscow University Mathematics Bulletin, vol. 59 (2004), no. 3, pp. 12–17 (2005).)

Computation

We enumerate partial Groebner bases for the Baumslag-Gersten groups as follows.

/*Use the ApCoCoA package ncpoly.*/
 
 Use ZZ/(2)[a,b,c,d];
 NC.SetOrdering("LLEX");
 Define CreateRelationsBaumslagGersten()
   Relations:=[];
   // add the relations of the inverse elements ac = ca = 1 and bd = db = 1
   Append(Relations,[[a,c],[1]]);
   Append(Relations,[[c,a],[1]]);
   Append(Relations,[[b,d],[1]]);
   Append(Relations,[[d,b],[1]]);
   // add the relation (b^{-1}a^{-1}b)a(b^{-1}a^{-1}b = a^2)
   Append(Relations,[[d,c,b,a,d,c,b],[a^2]]);
   Return Relations;
 EndDefine;
 
 Relations:=CreateRelationsBaumslagGersten();
 Relations;
 GB:=NC.GB(Relations,31,1,100,1000);
 GB;