Difference between revisions of "ApCoCoA-1:Symbolic data Computations"
From ApCoCoAWiki
Line 3: | Line 3: | ||
==== <div id="Baumslag_groups">Computations of Baumslag groups</div> ==== | ==== <div id="Baumslag_groups">Computations of Baumslag groups</div> ==== | ||
− | + | Recall that the Baumslag-Solitar groups have the following presentation | |
− | + | BS(m,n)<a, b | b*a^m = a^n*b> where m, n are natural numbers | |
− | + | We enumerate partial Groebner bases for the Baumslag-Solitar groups as follows. | |
− | + | /*Use the ApCoCoA package ncpoly.*/ | |
− | + | Use ZZ/(2)[a[1..2],b[1..2]]; | |
+ | NC.SetOrdering("LLEX"); | ||
+ | A1:=[[a[1],a[2]],[1]]; | ||
+ | A2:=[[a[2],a[1]],[1]]; | ||
+ | B1:=[[b[1],b[2]],[1]]; | ||
+ | B2:=[[b[2],b[1]],[1]]; | ||
+ | -- Relation ba^2=a^3b. Change 2 and 3 in "()" to make another relation | ||
+ | R:=[[b[1],a[1]^(2)],[a[1]^(3),b[1]]]; | ||
+ | G:=[A1,A2,B1,B2,R]; | ||
+ | -- Enumerate a partial Groebner basis (see NC.GB for more details) | ||
+ | NC.GB(G,31,1,100,1000); | ||
− | + | /*Use the ApCoCoA package gbmr.*/ | |
− | |||
− | |||
− | |||
Define Baumslag1(...) | Define Baumslag1(...) | ||
If Not Len(ARGV) = 2 And Not Len(ARGV) = 4 Then | If Not Len(ARGV) = 2 And Not Len(ARGV) = 4 Then |
Revision as of 13:10, 18 June 2013
Computation Examples for Non-abelian Groups
Computations of Baumslag groups
Recall that the Baumslag-Solitar groups have the following presentation
BS(m,n)<a, b | b*a^m = a^n*b> where m, n are natural numbers
We enumerate partial Groebner bases for the Baumslag-Solitar groups as follows.
/*Use the ApCoCoA package ncpoly.*/ Use ZZ/(2)[a[1..2],b[1..2]]; NC.SetOrdering("LLEX"); A1:=[[a[1],a[2]],[1]]; A2:=[[a[2],a[1]],[1]]; B1:=[[b[1],b[2]],[1]]; B2:=[[b[2],b[1]],[1]]; -- Relation ba^2=a^3b. Change 2 and 3 in "()" to make another relation R:=[[b[1],a[1]^(2)],[a[1]^(3),b[1]]]; G:=[A1,A2,B1,B2,R]; -- Enumerate a partial Groebner basis (see NC.GB for more details) NC.GB(G,31,1,100,1000);
/*Use the ApCoCoA package gbmr.*/ Define Baumslag1(...) If Not Len(ARGV) = 2 And Not Len(ARGV) = 4 Then Error("Error in Baumslag1(...). There have to be two argument (n and m for exponents) or four arguments (n, m, degree, loops)"); EndIf; For I:= 1 To Len(ARGV) Do If Not Type(ARGV[I]) = INT Then Error("Error in Baumslag1(...). The Type of the Arguments must be INT"); ElIf ARGV[I] < 1 Then Error("Error in Baumslag1(...). The integer arguments must be positive"); EndIf; EndFor; X:= "ab"; Ordering:= "LLEX"; R:= []; AM:= ""; BN:= ""; For I:= 1 To ARGV[1] Do AM:= AM + "a"; EndFor; For I:= 1 To ARGV[2] Do BN:= BN + "b"; EndFor; F:= [[[1, AM], [-1, ""]], [[1, BN], [-1, ""]]]; If Len(ARGV) = 1 Then S:= $apcocoa/gbmr.MRBP(X, Ordering, R, F); Else S:= $apcocoa/gbmr.MRBP(X, Ordering, R, F, ARGV[2], ARGV[3], 1); EndIf; Return S; EndDefine;
Baumslag2(m, n, [DegreeBound, LoopBound]) (optional parameters in "[ ]")
Baumslag-Solitar group with the following presentation < a, b | b * a^m = a^n * b >
Define Baumslag2(...) If Not Len(ARGV) = 2 And Not Len(ARGV) = 4 Then Error("Error in Baumslag1(...). There have to be two argument (n and m for exponents) or four arguments (n, m, degree, loops)"); EndIf; For I:= 1 To Len(ARGV) Do If Not Type(ARGV[I]) = INT Then Error("Error in Baumslag1(...). The Type of the Arguments must be INT"); ElIf ARGV[I] < 1 Then Error("Error in Baumslag1(...). The integer arguments must be positive"); EndIf; EndFor; X:= "abcdABCD"; Ordering:= "LLEX"; R:= []; AM:= ""; AN:= ""; For I:= 1 To ARGV[1] Do AM:= AM + "a"; EndFor; For I:= 1 To ARGV[2] Do AN:= AN + "a"; EndFor; F1 := [[1, "aA"], [-1, ""]]; F2 := [[1, "bB"], [-1, ""]]; F3 := [[1, "cC"], [-1, ""]]; F4 := [[1, "dD"], [-1, ""]]; F5 := [[1, "Aa"], [-1, ""]]; F6 := [[1, "Bb"], [-1, ""]]; F7 := [[1, "Cc"], [-1, ""]]; F8 := [[1, "Dd"], [-1, ""]]; F:= [F1, F2, F3, F4, F5, F6, F7, F8, [[1, "a"], [-1, "c"]], [[1, "b"], [-1, "d"]], [[1, "b" + AN], [-1, AM + "b"]]]; If Len(ARGV) = 1 Then S:= $apcocoa/gbmr.MRBP(X, Ordering, R, F); Else S:= $apcocoa/gbmr.MRBP(X, Ordering, R, F, ARGV[2], ARGV[3], 1); EndIf; Return S; EndDefine;