Difference between revisions of "ApCoCoA-1:NC.Deg"

From ApCoCoAWiki
Line 15: Line 15:
 
</itemize>
 
</itemize>
 
<example>
 
<example>
NC.SetX(<quotes>abc</quotes>);
+
USE QQ[x[1..2],y[1..2]];
F:=[[1,<quotes>ab</quotes>],[2,<quotes>aa</quotes>],[3,<quotes>bb</quotes>],[4,<quotes>bab</quotes>]];
+
F1:= [[2x[1],x[2]], [13y[2]], [5]]; -- 2x[1]x[2]+13y[2]+5
NC.Deg(F);
+
NC.Deg(F1);
3
+
 
 +
2
 
-------------------------------
 
-------------------------------
NC.Deg([]); -- 0 polynomial
+
NC.Deg([]);
 +
 
 
0
 
0
 
-------------------------------
 
-------------------------------

Revision as of 17:42, 3 May 2013

NC.Deg

The standard degree of a polynomial in a non-commutative polynomial ring.

Syntax

NC.Deg(F:LIST):INT

Description


Please set non-commutative polynomial ring (via the command Use) before calling this function. For more information, please check the relevant commands and functions.

  • @param F: a non-commutative polynomial. Each polynomial is represented as a LIST of LISTs, and each element in every inner LIST involves only one indeterminate or none (a constant). For example, the polynomial f=2x[2]y[1]x[2]^2-9y[2]x[1]^2x[2]^3+5 is represented as F:=[[2x[1],y[1],x[2]^2], [-9y[2],x[1]^2,x[2]^3], [5]]. The zero polynomial 0 is represented as the empty LIST [].

  • @return: an INT which represents the standard degree of F. Note that the standard degree of 0 is 0.

Example

USE QQ[x[1..2],y[1..2]];
F1:= [[2x[1],x[2]], [13y[2]], [5]]; -- 2x[1]x[2]+13y[2]+5
NC.Deg(F1);

2
-------------------------------
NC.Deg([]);

0
-------------------------------

See also

Use