Difference between revisions of "ApCoCoA-1:NCo.FindPolynomials"
(New page: <command> <title>NCo.FindPolynomials</title> <short_description> Find polynomials with specified alphabet (set of indeterminates) from a list of polynomials in monoid rings. </short_descr...) |
|||
Line 2: | Line 2: | ||
<title>NCo.FindPolynomials</title> | <title>NCo.FindPolynomials</title> | ||
<short_description> | <short_description> | ||
− | Find polynomials with specified alphabet (set of indeterminates) from a | + | Find polynomials with specified alphabet (set of indeterminates) from a LIST of non-commutative polynomials. |
</short_description> | </short_description> | ||
<syntax> | <syntax> | ||
Line 10: | Line 10: | ||
<itemize> | <itemize> | ||
<item>@param <em>Alphabet</em>: a STRING, which is the specified alphabet.</item> | <item>@param <em>Alphabet</em>: a STRING, which is the specified alphabet.</item> | ||
− | <item>@param <em>Polynomials</em>: a LIST of polynomials. Note that each polynomial is represented as a LIST of monomials, which are | + | <item>@param <em>Polynomials</em>: a LIST of non-commutative polynomials. Note that each polynomial is represented as a LIST of monomials, which are LISTs of the form [C, W] where W is a word in <tt><X></tt> and C is the coefficient of W. Each word in <tt><X></tt> is represented as a STRING. For example, the word <tt>xy^2x</tt> is represented as <quotes>xyyx</quotes>, and the identity is represented as the empty string <quotes></quotes>. Thus, the polynomial <tt>f=xy-y+1</tt> in <tt>K<x,y></tt> is represented as F:=[[1,<quotes>xy</quotes>], [-1, <quotes>y</quotes>], [1,<quotes></quotes>]]. The zero polynomial <tt>0</tt> is represented as the empty LIST [].</item> |
− | <item>@return: a LIST of polynomials | + | <item>@return: a LIST of polynomials whose indeterminates are in Alphabet.</item> |
</itemize> | </itemize> | ||
<example> | <example> | ||
Line 49: | Line 49: | ||
</example> | </example> | ||
</description> | </description> | ||
− | |||
− | |||
− | |||
<types> | <types> | ||
− | |||
<type>non_commutative</type> | <type>non_commutative</type> | ||
− | |||
</types> | </types> | ||
<key>gbmr.FindPolynomials</key> | <key>gbmr.FindPolynomials</key> |
Revision as of 16:27, 30 April 2013
NCo.FindPolynomials
Find polynomials with specified alphabet (set of indeterminates) from a LIST of non-commutative polynomials.
Syntax
NCo.FindPolynomials(Alphabet:STRING, Polynomials:LIST):LIST
Description
@param Alphabet: a STRING, which is the specified alphabet.
@param Polynomials: a LIST of non-commutative polynomials. Note that each polynomial is represented as a LIST of monomials, which are LISTs of the form [C, W] where W is a word in <X> and C is the coefficient of W. Each word in <X> is represented as a STRING. For example, the word xy^2x is represented as "xyyx", and the identity is represented as the empty string "". Thus, the polynomial f=xy-y+1 in K<x,y> is represented as F:=[[1,"xy"], [-1, "y"], [1,""]]. The zero polynomial 0 is represented as the empty LIST [].
@return: a LIST of polynomials whose indeterminates are in Alphabet.
Example
Polynomials:=[[[1,<quotes>a</quotes>], [1,<quotes>b</quotes>], [1,<quotes>c</quotes>]], [[1,<quotes>b</quotes>]]]; NCo.FindPolynomials(<quotes>abc</quotes>, Polynomials); [[[1, <quotes>a</quotes>], [1, <quotes>b</quotes>], [1, <quotes>c</quotes>]], [[1, <quotes>b</quotes>]]] ------------------------------- NCo.FindPolynomials(<quotes>a</quotes>, Polynomials); [ ] ------------------------------- NCo.FindPolynomials(<quotes>b</quotes>, Polynomials); [[[1, <quotes>b</quotes>]]] ------------------------------- NCo.FindPolynomials(<quotes>ab</quotes>, Polynomials); [[[1, <quotes>b</quotes>]]] ------------------------------- NCo.SetX(<quotes>txyz</quotes>); NCo.SetOrdering(<quotes>ELIM</quotes>); -- ELIM will eliminate t, x, y, z one after another F1 := [[1,<quotes>xx</quotes>], [-1,<quotes>yx</quotes>]]; F2 := [[1,<quotes>xy</quotes>], [-1,<quotes>ty</quotes>]]; F3 := [[1,<quotes>xt</quotes>], [-1, <quotes>tx</quotes>]]; F4 := [[1,<quotes>yt</quotes>], [-1, <quotes>ty</quotes>]]; G := [F1, F2,F3,F4]; Gb := NCo.GB(G); -- compute Groebner basis of <G> w.r.t. ELIM Gb; NCo.FindPolynomials(<quotes>xyz</quotes>,Gb); -- compute Groebner basis of the intersection of <G> and K<x,y,z> w.r.t. ELIM [[[1, <quotes>xx</quotes>], [2, <quotes>yx</quotes>]], [[1, <quotes>ty</quotes>], [2, <quotes>xy</quotes>]], [[1, <quotes>yt</quotes>], [2, <quotes>xy</quotes>]], [[1, <quotes>tx</quotes>], [2, <quotes>xt</quotes>]], [[1, <quotes>xyx</quotes>], [2, <quotes>yyx</quotes>]], [[1, <quotes>xyy</quotes>], [2, <quotes>yxy</quotes>]], [[1, <quotes>yxt</quotes>], [2, <quotes>yyx</quotes>]]] ------------------------------- [[[1, <quotes>xx</quotes>], [2, <quotes>yx</quotes>]], [[1, <quotes>xyx</quotes>], [2, <quotes>yyx</quotes>]], [[1, <quotes>xyy</quotes>], [2, <quotes>yxy</quotes>]]] -------------------------------