Difference between revisions of "ApCoCoA-1:NC.HF"

From ApCoCoAWiki
Line 2: Line 2:
 
<title>NC.HF</title>
 
<title>NC.HF</title>
 
<short_description>
 
<short_description>
Compute the values of the Hilbert function of a finitely generated <tt>K</tt>-algebra.
+
Enumerate the values of the Hilbert function of a finitely generated <tt>K</tt>-algebra.
 
<par/>
 
<par/>
 
For every <tt>i</tt> in <tt>N</tt>, we let <tt>F_{i}</tt> be the <tt>K</tt>-vector subspace generated by the words of length less than or equal to <tt>i</tt>. Then <tt>{F_{i}}</tt> is a filtration of <tt>K&lt;X&gt;</tt>. Let <tt>I</tt> be an ideal of <tt>K&lt;X&gt;</tt>. The filtration <tt>{F_{i}}</tt> induces a filtration <tt>{F_{i}/(F_{i} intersect I)}</tt> of <tt>K&lt;X&gt;/I</tt>. The <em>Hilbert function</em> of <tt>K</tt>-algebra <tt>K&lt;X&gt;/I</tt> is a map from <tt>N</tt> to <tt>N</tt> defined by mapping <tt>i</tt> to <tt>dim(F_{i}/(F_{i} intersect I))-dim(F_{i-1}/(F_{i-1} intersect I))</tt>.
 
For every <tt>i</tt> in <tt>N</tt>, we let <tt>F_{i}</tt> be the <tt>K</tt>-vector subspace generated by the words of length less than or equal to <tt>i</tt>. Then <tt>{F_{i}}</tt> is a filtration of <tt>K&lt;X&gt;</tt>. Let <tt>I</tt> be an ideal of <tt>K&lt;X&gt;</tt>. The filtration <tt>{F_{i}}</tt> induces a filtration <tt>{F_{i}/(F_{i} intersect I)}</tt> of <tt>K&lt;X&gt;/I</tt>. The <em>Hilbert function</em> of <tt>K</tt>-algebra <tt>K&lt;X&gt;/I</tt> is a map from <tt>N</tt> to <tt>N</tt> defined by mapping <tt>i</tt> to <tt>dim(F_{i}/(F_{i} intersect I))-dim(F_{i-1}/(F_{i-1} intersect I))</tt>.
Line 30: Line 30:
 
</description>
 
</description>
 
<seealso>
 
<seealso>
<see>NC.Add</see>
 
<see>NC.Deg</see>
 
<see>NC.FindPolynomials</see>
 
<see>NC.GB</see>
 
<see>NC.HF</see>
 
<see>NC.Interreduction</see>
 
<see>NC.Intersection</see>
 
<see>NC.IsFinite</see>
 
<see>NC.IsGB</see>
 
<see>NC.IsHomog</see>
 
<see>NC.KernelOfHomomorphism</see>
 
<see>NC.LC</see>
 
<see>NC.LT</see>
 
<see>NC.LTIdeal</see>
 
<see>NC.MB</see>
 
<see>NC.MinimalPolynomial</see>
 
<see>NC.Multiply</see>
 
<see>NC.NR</see>
 
<see>NC.ReducedGB</see>
 
<see>NC.SetFp</see>
 
 
<see>NC.SetOrdering</see>
 
<see>NC.SetOrdering</see>
<see>NC.SetRelations</see>
 
<see>NC.SetRules</see>
 
<see>NC.SetX</see>
 
<see>NC.Subtract</see>
 
<see>NC.TruncatedGB</see>
 
<see>NC.UnsetFp</see>
 
<see>NC.UnsetOrdering</see>
 
<see>NC.UnsetRelations</see>
 
<see>NC.UnsetRules</see>
 
<see>NC.UnsetX</see>
 
 
<see>Introduction to CoCoAServer</see>
 
<see>Introduction to CoCoAServer</see>
 
</seealso>
 
</seealso>
Line 69: Line 39:
 
<type>non_commutative</type>
 
<type>non_commutative</type>
 
</types>
 
</types>
<key>gbmr.HF</key>
+
<key>ncpoly.HF</key>
 
<key>NC.HF</key>
 
<key>NC.HF</key>
 
<key>HF</key>
 
<key>HF</key>
<wiki-category>Package_gbmr</wiki-category>
+
<wiki-category>Package_ncpoly</wiki-category>
 
</command>
 
</command>

Revision as of 17:17, 25 April 2013

NC.HF

Enumerate the values of the Hilbert function of a finitely generated K-algebra.

For every i in N, we let F_{i} be the K-vector subspace generated by the words of length less than or equal to i. Then {F_{i}} is a filtration of K<X>. Let I be an ideal of K<X>. The filtration {F_{i}} induces a filtration {F_{i}/(F_{i} intersect I)} of K<X>/I. The Hilbert function of K-algebra K<X>/I is a map from N to N defined by mapping i to dim(F_{i}/(F_{i} intersect I))-dim(F_{i-1}/(F_{i-1} intersect I)).

Syntax

NC.HF(Gb:LIST):LIST
NC.HF(Gb:LIST, DegreeBound:INT):LIST

Description

Please note: The function(s) explained on this page is/are using the ApCoCoAServer. You will have to start the ApCoCoAServer in order to use it/them.

Please set ring environment coefficient field K, alphabet (or set of indeterminates) X and ordering via the functions NC.SetFp, NC.SetX and NC.SetOrdering, respectively, before calling the function. The default coefficient field is Q. The default ordering is length-lexicographic ordering ("LLEX"). For more information, please check the relevant functions.

  • @param Gb: a LIST of non-zero polynomials in K<X> which is a Groebner basis (w.r.t. a length compatible admissible ordering, say Ordering) of the two-sided ideal generated by Gb. Each polynomial is represented as a LIST of monomials, which are pairs of the form [C, W] where W is a word in <X> and C is the coefficient of W. For example, the polynomial F=xy-y+1 is represented as F:=[[1,"xy"], [-1, "y"], [1,""]]. Warning: users should take responsibility to make sure that Gb is indeed a Groebner basis w.r.t. Ordering! In the case that Gb is a partical Groebner basis, the function enumerates pseudo values.

  • @param DegreeBound: (optional) a positive integer which is a degree bound of Hilbert funtion. Note that we set DegreeBound=32 by default. Thus to compute all the values of the Hilbert function, it is necessary to set DegreeBound to a larger enough number.

  • @return: a LIST of non-negative integers, which is a list of values of the Hilbert function of the K-algebra K<X>/(Gb).

Example

NC.SetX(<quotes>xyzt</quotes>); 
NC.SetOrdering(<quotes>LLEX</quotes>); 
Gb:= [[[1, <quotes>yt</quotes>], [-1, <quotes>ty</quotes>]], [[1, <quotes>xt</quotes>], [-1, <quotes>tx</quotes>]], [[1, <quotes>xy</quotes>], [-1, <quotes>ty</quotes>]], [[1, <quotes>xx</quotes>], [-1, <quotes>yx</quotes>]],  
[[1, <quotes>tyy</quotes>], [-1, <quotes>tty</quotes>]], [[1, <quotes>yyx</quotes>], [-1, <quotes>tyx</quotes>]]]; 
NC.HF(Gb, 5);
[1, 4, 12, 34, 100, 292]
-------------------------------

See also

NC.SetOrdering

Introduction to CoCoAServer