Difference between revisions of "ApCoCoA-1:NC.Interreduction"

From ApCoCoAWiki
Line 2: Line 2:
 
<title>NC.Interreduction</title>
 
<title>NC.Interreduction</title>
 
<short_description>
 
<short_description>
Interreduce a list (set) of polynomials in a free monoid ring.  
+
Interreduction of a LIST of polynomials in a non-commutative polynomial ring.  
 
<par/>
 
<par/>
 
Note that, given an admissible ordering <tt>Ordering</tt>, a set of non-zero polynomial <tt>G</tt> is called <em>interreduced</em> w.r.t. <tt>Ordering</tt> if no element of <tt>Supp(g)</tt> is contained in <tt>LT(G\{g})</tt> for all <tt>g</tt> in <tt>G</tt>.
 
Note that, given an admissible ordering <tt>Ordering</tt>, a set of non-zero polynomial <tt>G</tt> is called <em>interreduced</em> w.r.t. <tt>Ordering</tt> if no element of <tt>Supp(g)</tt> is contained in <tt>LT(G\{g})</tt> for all <tt>g</tt> in <tt>G</tt>.
Line 28: Line 28:
 
</description>
 
</description>
 
<seealso>
 
<seealso>
<see>NC.Add</see>
 
<see>NC.Deg</see>
 
<see>NC.FindPolynomials</see>
 
<see>NC.GB</see>
 
<see>NC.HF</see>
 
<see>NC.Interreduction</see>
 
<see>NC.Intersection</see>
 
<see>NC.IsFinite</see>
 
<see>NC.IsGB</see>
 
<see>NC.IsHomog</see>
 
<see>NC.KernelOfHomomorphism</see>
 
<see>NC.LC</see>
 
<see>NC.LT</see>
 
<see>NC.LTIdeal</see>
 
<see>NC.MB</see>
 
<see>NC.MinimalPolynomial</see>
 
<see>NC.Multiply</see>
 
<see>NC.NR</see>
 
<see>NC.ReducedGB</see>
 
 
<see>NC.SetFp</see>
 
<see>NC.SetFp</see>
 
<see>NC.SetOrdering</see>
 
<see>NC.SetOrdering</see>
<see>NC.SetRelations</see>
 
<see>NC.SetRules</see>
 
 
<see>NC.SetX</see>
 
<see>NC.SetX</see>
<see>NC.Subtract</see>
 
<see>NC.TruncatedGB</see>
 
<see>NC.UnsetFp</see>
 
<see>NC.UnsetOrdering</see>
 
<see>NC.UnsetRelations</see>
 
<see>NC.UnsetRules</see>
 
<see>NC.UnsetX</see>
 
 
<see>Introduction to CoCoAServer</see>
 
<see>Introduction to CoCoAServer</see>
 
</seealso>
 
</seealso>
Line 67: Line 39:
 
<type>ideal</type>
 
<type>ideal</type>
 
</types>
 
</types>
<key>gbmr.Interreduction</key>
+
<key>ncpoly.Interreduction</key>
 
<key>NC.Interreduction</key>
 
<key>NC.Interreduction</key>
 
<key>Interreduction</key>
 
<key>Interreduction</key>
<wiki-category>Package_gbmr</wiki-category>
+
<wiki-category>Package_ncpoly</wiki-category>
 
</command>
 
</command>

Revision as of 15:33, 25 April 2013

NC.Interreduction

Interreduction of a LIST of polynomials in a non-commutative polynomial ring.

Note that, given an admissible ordering Ordering, a set of non-zero polynomial G is called interreduced w.r.t. Ordering if no element of Supp(g) is contained in LT(G\{g}) for all g in G.

Syntax

NC.Interreduction(G:LIST):LIST

Description

Please note: The function(s) explained on this page is/are using the ApCoCoAServer. You will have to start the ApCoCoAServer in order to use it/them.

Please set ring environment coefficient field K, alphabet (or set of indeterminates) X and ordering via the functions NC.SetFp, NC.SetX and NC.SetOrdering, respectively, before calling the function. The default coefficient field is Q. The default ordering is length-lexicographic ordering ("LLEX"). For more information, please check the relevant functions.

  • @param G: a LIST of polynomials in K<X>. Each polynomial is represented as a LIST of monomials, which are pairs of the form [C, W] where W is a word in <X> and C is the coefficient of W. For example, the polynomial F=xy-y+1 is represented as F:=[[1,"xy"], [-1, "y"], [1,""]]. The zero polynomial 0 is represented as the empty LIST [].

  • @return: a LIST of interreduced polynomials.

Example

NC.SetX(<quotes>abc</quotes>);
NC.SetOrdering(<quotes>ELIM</quotes>);
G:=[[[1,<quotes>ba</quotes>]], [[1,<quotes>b</quotes>],[1,<quotes></quotes>]], [[1,<quotes>c</quotes>]]];
NC.Interreduction(G);

[[[1, <quotes>a</quotes>]], [[1, <quotes>b</quotes>], [1, <quotes></quotes>]], [[1, <quotes>c</quotes>]]]
-------------------------------

See also

NC.SetFp

NC.SetOrdering

NC.SetX

Introduction to CoCoAServer