Difference between revisions of "ApCoCoA-1:NC.Add"

From ApCoCoAWiki
Line 2: Line 2:
 
<title>NC.Add</title>
 
<title>NC.Add</title>
 
<short_description>
 
<short_description>
Addition of two polynomials in a free monoid ring.
+
Addition of two polynomials in a non-commutative polynomial ring.
 
</short_description>
 
</short_description>
 
<syntax>
 
<syntax>
Line 43: Line 43:
 
</description>
 
</description>
 
<seealso>
 
<seealso>
<see>NC.Add</see>
 
<see>NC.Deg</see>
 
<see>NC.FindPolynomials</see>
 
<see>NC.GB</see>
 
<see>NC.HF</see>
 
<see>NC.Interreduction</see>
 
<see>NC.Intersection</see>
 
<see>NC.IsFinite</see>
 
<see>NC.IsGB</see>
 
<see>NC.IsHomog</see>
 
<see>NC.KernelOfHomomorphism</see>
 
<see>NC.LC</see>
 
<see>NC.LT</see>
 
<see>NC.LTIdeal</see>
 
<see>NC.MB</see>
 
<see>NC.MinimalPolynomial</see>
 
<see>NC.Multiply</see>
 
<see>NC.NR</see>
 
<see>NC.ReducedGB</see>
 
<see>NC.SetFp</see>
 
 
<see>NC.SetOrdering</see>
 
<see>NC.SetOrdering</see>
<see>NC.SetRelations</see>
 
<see>NC.SetRules</see>
 
<see>NC.SetX</see>
 
<see>NC.Subtract</see>
 
<see>NC.TruncatedGB</see>
 
<see>NC.UnsetFp</see>
 
<see>NC.UnsetOrdering</see>
 
<see>NC.UnsetRelations</see>
 
<see>NC.UnsetRules</see>
 
<see>NC.UnsetX</see>
 
 
<see>Introduction to CoCoAServer</see>
 
<see>Introduction to CoCoAServer</see>
 
</seealso>
 
</seealso>
Line 81: Line 51:
 
<type>non_commutative</type>
 
<type>non_commutative</type>
 
</types>
 
</types>
<key>gbmr.Add</key>
+
<key>ncpoly.Add</key>
 
<key>NC.Add</key>
 
<key>NC.Add</key>
 
<key>Add</key>
 
<key>Add</key>
 
<wiki-category>Package_ncpoly</wiki-category>
 
<wiki-category>Package_ncpoly</wiki-category>
 
</command>
 
</command>

Revision as of 14:40, 25 April 2013

NC.Add

Addition of two polynomials in a non-commutative polynomial ring.

Syntax

NC.Add(F1:LIST, F2:LIST):LIST

Description

Please note: The function(s) explained on this page is/are using the ApCoCoAServer. You will have to start the ApCoCoAServer in order to use it/them.

Please set ring environment coefficient field K, alphabet (or set of indeterminates) X and ordering via the functions NC.SetFp, NC.SetX and NC.SetOrdering, respectively, before calling the function. The default coefficient field is Q. The default ordering is length-lexicographic ordering ("LLEX"). For more information, please check the relevant functions.

  • @param F1, F2: two polynomials in K<X>, which are left and right operands of addition respectively. Each polynomial is represented as a LIST of monomials, which are pairs of the form [C, W] where W is a word in <X> and C is the coefficient of W. For example, the polynomial F=xy-y+1 is represented as F:=[[1,"xy"], [-1, "y"], [1,""]]. The zero polynomial 0 is represented as the empty LIST [].

  • @return: a LIST which represents the polynomial equal to F1+F2.

Example

NC.SetX(<quotes>abc</quotes>); 				
NC.SetOrdering(<quotes>ELIM</quotes>); 
NC.RingEnv();
Coefficient ring : Q
Alphabet : abc
Ordering : ELIE
-------------------------------	
F1 := [[1,<quotes>a</quotes>],[1,<quotes></quotes>]];
F2 := [[1,<quotes>b</quotes>],[1,<quotes>ba</quotes>]];
NC.Add(F1,F2); -- over Q
[[1, <quotes>ba</quotes>], [1, <quotes>a</quotes>], [1, <quotes>b</quotes>], [1, <quotes></quotes>]]
-------------------------------
NC.SetFp(); -- set default Fp = F2
NC.RingEnv();
Coefficient ring : Fp = Z/(2)
Alphabet : abc
Ordering : ELIM
-------------------------------
NC.Add(F1,F2); -- over F2
[[1, <quotes>ba</quotes>], [1, <quotes>a</quotes>], [1, <quotes>b</quotes>], [1, <quotes></quotes>]]
-------------------------------
NC.Add(F1,F1); -- over F2
[ ]
-------------------------------

See also

NC.SetOrdering

Introduction to CoCoAServer