Difference between revisions of "ApCoCoA-1:NCo.Add"
(New page: <command> <title>NC.Add</title> <short_description> Addition of two polynomials in a free monoid ring. </short_description> <syntax> NC.Add(F1:LIST, F2:LIST):LIST </syntax> <description> <...) |
|||
Line 1: | Line 1: | ||
<command> | <command> | ||
− | <title> | + | <title>NCo.Add</title> |
<short_description> | <short_description> | ||
Addition of two polynomials in a free monoid ring. | Addition of two polynomials in a free monoid ring. | ||
</short_description> | </short_description> | ||
<syntax> | <syntax> | ||
− | + | NCo.Add(F1:LIST, F2:LIST):LIST | |
</syntax> | </syntax> | ||
<description> | <description> | ||
<em>Please note:</em> The function(s) explained on this page is/are using the <em>ApCoCoAServer</em>. You will have to start the ApCoCoAServer in order to use it/them. | <em>Please note:</em> The function(s) explained on this page is/are using the <em>ApCoCoAServer</em>. You will have to start the ApCoCoAServer in order to use it/them. | ||
<par/> | <par/> | ||
− | Please set ring environment <em>coefficient field</em> <tt>K</tt>, <em>alphabet</em> (or set of indeterminates) <tt>X</tt> and <em>ordering</em> via the functions <ref> | + | Please set ring environment <em>coefficient field</em> <tt>K</tt>, <em>alphabet</em> (or set of indeterminates) <tt>X</tt> and <em>ordering</em> via the functions <ref>NCo.SetFp</ref>, <ref>NCo.SetX</ref> and <ref>NCo.SetOrdering</ref>, respectively, before calling the function. The default coefficient field is <tt>Q</tt>. The default ordering is length-lexicographic ordering (<quotes>LLEX</quotes>). For more information, please check the relevant functions. |
<itemize> | <itemize> | ||
<item>@param <em>F1, F2:</em> two polynomials in <tt>K<X></tt>, which are left and right operands of addition respectively. Each polynomial is represented as a LIST of monomials, which are pairs of the form [C, W] where W is a word in <tt><X></tt> and C is the coefficient of W. For example, the polynomial <tt>F=xy-y+1</tt> is represented as F:=[[1,<quotes>xy</quotes>], [-1, <quotes>y</quotes>], [1,<quotes></quotes>]]. The zero polynomial <tt>0</tt> is represented as the empty LIST [].</item> | <item>@param <em>F1, F2:</em> two polynomials in <tt>K<X></tt>, which are left and right operands of addition respectively. Each polynomial is represented as a LIST of monomials, which are pairs of the form [C, W] where W is a word in <tt><X></tt> and C is the coefficient of W. For example, the polynomial <tt>F=xy-y+1</tt> is represented as F:=[[1,<quotes>xy</quotes>], [-1, <quotes>y</quotes>], [1,<quotes></quotes>]]. The zero polynomial <tt>0</tt> is represented as the empty LIST [].</item> | ||
Line 16: | Line 16: | ||
</itemize> | </itemize> | ||
<example> | <example> | ||
− | + | NCo.SetX(<quotes>abc</quotes>); | |
− | + | NCo.SetOrdering(<quotes>ELIM</quotes>); | |
− | + | NCo.RingEnv(); | |
Coefficient ring : Q | Coefficient ring : Q | ||
Alphabet : abc | Alphabet : abc | ||
Line 25: | Line 25: | ||
F1 := [[1,<quotes>a</quotes>],[1,<quotes></quotes>]]; | F1 := [[1,<quotes>a</quotes>],[1,<quotes></quotes>]]; | ||
F2 := [[1,<quotes>b</quotes>],[1,<quotes>ba</quotes>]]; | F2 := [[1,<quotes>b</quotes>],[1,<quotes>ba</quotes>]]; | ||
− | + | NCo.Add(F1,F2); -- over Q | |
[[1, <quotes>ba</quotes>], [1, <quotes>a</quotes>], [1, <quotes>b</quotes>], [1, <quotes></quotes>]] | [[1, <quotes>ba</quotes>], [1, <quotes>a</quotes>], [1, <quotes>b</quotes>], [1, <quotes></quotes>]] | ||
------------------------------- | ------------------------------- | ||
− | + | NCo.SetFp(); -- set default Fp = F2 | |
− | + | NCo.RingEnv(); | |
Coefficient ring : Fp = Z/(2) | Coefficient ring : Fp = Z/(2) | ||
Alphabet : abc | Alphabet : abc | ||
Ordering : ELIM | Ordering : ELIM | ||
------------------------------- | ------------------------------- | ||
− | + | NCo.Add(F1,F2); -- over F2 | |
[[1, <quotes>ba</quotes>], [1, <quotes>a</quotes>], [1, <quotes>b</quotes>], [1, <quotes></quotes>]] | [[1, <quotes>ba</quotes>], [1, <quotes>a</quotes>], [1, <quotes>b</quotes>], [1, <quotes></quotes>]] | ||
------------------------------- | ------------------------------- | ||
− | + | NCo.Add(F1,F1); -- over F2 | |
[ ] | [ ] | ||
------------------------------- | ------------------------------- | ||
Line 43: | Line 43: | ||
</description> | </description> | ||
<seealso> | <seealso> | ||
− | <see> | + | <see>NCo.SetFp</see> |
− | + | <see>NCo.SetOrdering</see> | |
− | + | <see>NCo.SetX</see> | |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | <see> | ||
− | <see> | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
<see>Introduction to CoCoAServer</see> | <see>Introduction to CoCoAServer</see> | ||
</seealso> | </seealso> | ||
Line 82: | Line 54: | ||
</types> | </types> | ||
<key>gbmr.Add</key> | <key>gbmr.Add</key> | ||
− | <key> | + | <key>NCo.Add</key> |
<key>Add</key> | <key>Add</key> | ||
<wiki-category>Package_gbmr</wiki-category> | <wiki-category>Package_gbmr</wiki-category> | ||
</command> | </command> |
Revision as of 14:32, 25 April 2013
NCo.Add
Addition of two polynomials in a free monoid ring.
Syntax
NCo.Add(F1:LIST, F2:LIST):LIST
Description
Please note: The function(s) explained on this page is/are using the ApCoCoAServer. You will have to start the ApCoCoAServer in order to use it/them.
Please set ring environment coefficient field K, alphabet (or set of indeterminates) X and ordering via the functions NCo.SetFp, NCo.SetX and NCo.SetOrdering, respectively, before calling the function. The default coefficient field is Q. The default ordering is length-lexicographic ordering ("LLEX"). For more information, please check the relevant functions.
@param F1, F2: two polynomials in K<X>, which are left and right operands of addition respectively. Each polynomial is represented as a LIST of monomials, which are pairs of the form [C, W] where W is a word in <X> and C is the coefficient of W. For example, the polynomial F=xy-y+1 is represented as F:=[[1,"xy"], [-1, "y"], [1,""]]. The zero polynomial 0 is represented as the empty LIST [].
@return: a LIST which represents the polynomial equal to F1+F2.
Example
NCo.SetX(<quotes>abc</quotes>); NCo.SetOrdering(<quotes>ELIM</quotes>); NCo.RingEnv(); Coefficient ring : Q Alphabet : abc Ordering : ELIE ------------------------------- F1 := [[1,<quotes>a</quotes>],[1,<quotes></quotes>]]; F2 := [[1,<quotes>b</quotes>],[1,<quotes>ba</quotes>]]; NCo.Add(F1,F2); -- over Q [[1, <quotes>ba</quotes>], [1, <quotes>a</quotes>], [1, <quotes>b</quotes>], [1, <quotes></quotes>]] ------------------------------- NCo.SetFp(); -- set default Fp = F2 NCo.RingEnv(); Coefficient ring : Fp = Z/(2) Alphabet : abc Ordering : ELIM ------------------------------- NCo.Add(F1,F2); -- over F2 [[1, <quotes>ba</quotes>], [1, <quotes>a</quotes>], [1, <quotes>b</quotes>], [1, <quotes></quotes>]] ------------------------------- NCo.Add(F1,F1); -- over F2 [ ] -------------------------------
See also