Difference between revisions of "ApCoCoA-1:BBSGen.Poldeg"
From ApCoCoAWiki
Line 51: | Line 51: | ||
<see>BBSGen.NonTriv</see> | <see>BBSGen.NonTriv</see> | ||
<see>BBSGen.BBFinder</see> | <see>BBSGen.BBFinder</see> | ||
− | <key> | + | <key>Poldeg</key> |
− | <key>BBSGen. | + | <key>BBSGen.Poldeg</key> |
− | <key>bbsmingensys. | + | <key>bbsmingensys.Poldeg</key> |
<wiki-category>Package_bbsmingensys</wiki-category> | <wiki-category>Package_bbsmingensys</wiki-category> | ||
</command> | </command> |
Revision as of 19:35, 18 June 2012
BBSGen.PolDeg
This function computes the arrow degree of a given homogenous polynomial from the ring K[c](see BBSGen.WMat).
Syntax
BBSGen. Poldeg(F,OO,BO,N,W); BBSGen.Poldeg(F:POLY,OO:LIST,BO:LIST,N:INT,W:MAT):VECTOR;
Description
@param A homogeneous polynomial with respect to the arrow grading from the ring K[c], order ideal OO, border BO,number of indeterminates of the polynomial ring K[x_1,...,x_N] and the weight matrix(BBSGen.Wmat).
@return Degree vector of the given homogenous polynomial wrt. the arrow grading .
Example
Use R::=QQ[x[1..2]]; OO:= $apcocoa/borderbasis.Box([1,1]); BO:=$apcocoa/borderbasis.Border(OO); Mu:=Len(OO); Nu:=Len(BO); N:=Len(Indets()); W:=BBSGen.Wmat(OO,BO,N); Use XX::=QQ[c[1..Mu,1..Nu],t[1..N,1..N,1..Mu,1..Mu]]; F:= c[2,4]c[4,1] - c[3,3]c[4,2] - c[2,3] + c[3,4]; BBSGen.Poldeg(F,OO,BO,N,W); R :: Vector(1, 1)