Difference between revisions of "ApCoCoA-1:BBSGen.JacobiLin"
Line 1: | Line 1: | ||
<command> | <command> | ||
<title>BBSGen.JacobiLin</title> | <title>BBSGen.JacobiLin</title> | ||
− | <short_description>This function computes the K[c]-linear polynomial entries of the Jacobi identity | + | <short_description>This function computes the K[c]-linear polynomial entries of the Jacobi identity matrix [ A_m[A_k,A_l ] ]+[ A_k[ A_l,A_m]] +[ A_l[A_m,A_k ] ] where m,k,l is from {1...n}. |
</short_description> | </short_description> | ||
Line 10: | Line 10: | ||
</syntax> | </syntax> | ||
<description> | <description> | ||
− | Let R:=K[x_1,...,x_N] and A_k be the generic multiplication matrix associated to x_k. Let | + | Let R:=K[x_1,...,x_N] and A_k be the generic multiplication matrix associated to x_k. Let tau^kl_ij be the polynomial in the (i,j) position of the [A_k,A_l] where k,l in {1,..,N}. |
− | Let m,k,l in {1,...,N}. This function computes the polynomial entries of the Jacobi identity J^ | + | Let m,k,l in {1,...,N}. This function computes the polynomial entries of the Jacobi identity J^mkl= [ A_m[A_k,A_l ] ]+[ A_k[ A_l,A_m]] +[ A_l[A_m,A_k]] that has constant coeffiecients. During the computation entries of the commutators Tau^kl_ij will be considered as indeterminates t[k,l,i,j] in K[c[1..Mu,1..Nu],t[1..N,1..N,1..Mu,1..Mu]]. Therefore the result of BBSGen.JacobiLin is a list of polynomials from the ring K[t[1..N,1..N,1..Mu,1..Mu]]. |
Please note that this function does not work for the case, where N=2. | Please note that this function does not work for the case, where N=2. | ||
Line 20: | Line 20: | ||
<item>@param Order ideal OO, border BO, the number of indeterminates of the polynomial ring K[x_1,...,x_N]. | <item>@param Order ideal OO, border BO, the number of indeterminates of the polynomial ring K[x_1,...,x_N]. | ||
</item> | </item> | ||
− | <item>@return The K[c]-linear entries of the Jacobi Identity J^ | + | <item>@return The K[c]-linear entries of the Jacobi Identity J^ikl. |
.</item> | .</item> | ||
</itemize> | </itemize> |
Revision as of 19:07, 18 June 2012
BBSGen.JacobiLin
This function computes the K[c]-linear polynomial entries of the Jacobi identity matrix [ A_m[A_k,A_l ] ]+[ A_k[ A_l,A_m]] +[ A_l[A_m,A_k ] ] where m,k,l is from {1...n}.
Syntax
BBSGen.JacobiLin(OO,BO,N); BBSGen.JacobiLin(OO:LIST,BO:LIST,N:INTEGER):MATRIX
Description
Let R:=K[x_1,...,x_N] and A_k be the generic multiplication matrix associated to x_k. Let tau^kl_ij be the polynomial in the (i,j) position of the [A_k,A_l] where k,l in {1,..,N}.
Let m,k,l in {1,...,N}. This function computes the polynomial entries of the Jacobi identity J^mkl= [ A_m[A_k,A_l ] ]+[ A_k[ A_l,A_m]] +[ A_l[A_m,A_k]] that has constant coeffiecients. During the computation entries of the commutators Tau^kl_ij will be considered as indeterminates t[k,l,i,j] in K[c[1..Mu,1..Nu],t[1..N,1..N,1..Mu,1..Mu]]. Therefore the result of BBSGen.JacobiLin is a list of polynomials from the ring K[t[1..N,1..N,1..Mu,1..Mu]].
Please note that this function does not work for the case, where N=2.
@param Order ideal OO, border BO, the number of indeterminates of the polynomial ring K[x_1,...,x_N].
@return The K[c]-linear entries of the Jacobi Identity J^ikl. .
Example
Use R::=QQ[x[1..3]]; OO:=[1,x[1]]; BO:=$apcocoa/borderbasis.Border(OO); Mu:=Len(OO); Nu:=Len(BO); N:=Len(Indets()); Use XX::=QQ[c[1..Mu,1..Nu],t[1..N,1..N,1..Mu,1..Mu]]; BBSGen.JacobiLin(OO,BO,N); [[ [ -t[2,3,1,2],0], [ t[2,3,1,1] - t[2,3,2,2], t[2,3,1,2]]]]