Difference between revisions of "ApCoCoA-1:BBSGen.BBFinder"

From ApCoCoAWiki
Line 1: Line 1:
 
<command>
 
<command>
 
   <title>BBSGen.BBFinder</title>
 
   <title>BBSGen.BBFinder</title>
   <short_description>Let LF be a list of  indeterminates from the ring K[t[k,l,i,j]] \subset XX. This function finds the polynomials and their degree that correspond to the elements of the list LF.  
+
   <short_description>Let LF be a list of  indeterminates from the ring K[t[k,l,i,j] that is the subset of the ring  XX:=K[c[1..Mu,1..Nu],t[1..N,1..N,1..Mu,1..Mu]] . This function finds the polynomials and their degree that correspond to the elements of the list LF.  
 
              
 
              
 
  </short_description>
 
  </short_description>

Revision as of 14:50, 18 June 2012

BBSGen.BBFinder

Let LF be a list of indeterminates from the ring K[t[k,l,i,j] that is the subset of the ring XX:=K[c[1..Mu,1..Nu],t[1..N,1..N,1..Mu,1..Mu]] . This function finds the polynomials and their degree that correspond to the elements of the list LF.


Syntax

BBSGen.BBFinder(LF,OO,N,Poly); 
BBSGen.BBFinder(LF:LIST,OO:LIST,BO:LIST,N:INTEGER,W:MATRIX):LIST

Description

In order to use this function, one should define the ring XX as given in the example.

This function may not work properly for bigger order ideals and rings with more than three indeterminates, since the indeterminates of the ring XX also grows rapidly with respect to them.


  • @param List of t[k,l,i,j] , order ideal OO, border BO, N the number of indeterminates of the polynomial ring K[x_1,...,x_N] and the Weight Matrix(see BBSGen.Wmat).

  • @return List of generators of the vanishing ideal of the border basis, their position in the matrix [A_k,A_l] and their degree wrt. arrow grading (see BBSGen.Wmat).


Example

Use R::=QQ[x[1..2]];

OO:=$apcocoa/borderbasis.Box([1,1]);
BO:=$apcocoa/borderbasis.Border(OO);   
Mu:=Len(OO);
Nu:=Len(BO);
N:=Len(Indets());
W:=BBSGen.Wmat(OO,BO,N);

Use XX::=QQ[c[1..Mu,1..Nu],t[1..N,1..N,1..Mu,1..Mu]]; 

BBSGen.BBFinder([t[1,2,3,4],t[1,2,2,4]],OO,BO,N,W);

[ [   [   R :: Vector(1, 2)],
    [t[1,2,3,4]],
    [ -c[2,4]c[3,1] + c[3,2]c[3,3] + c[3,4]c[4,3] - c[3,3]c[4,4] + c[1,3]]],
  [[   R :: Vector(2, 1)],
    [  t[1,2,2,4]],
    [ -c[2,1]c[2,4] + c[2,2]c[3,3] + c[2,4]c[4,3] - c[2,3]c[4,4] - c[1,4]]]]
    




BBSGen.Wmat

BBSGen.NonTriv

BBSGen.Poldeg