Difference between revisions of "ApCoCoA-1:PGBC.ParallelGBC"
From ApCoCoAWiki
m |
m |
||
Line 13: | Line 13: | ||
==Example== | ==Example== | ||
− | To compute the Gröbner Basis of <tt>F</tt> as defined below using two cores you can enter the following | + | To compute the Gröbner Basis of <tt>F</tt> as defined below using two cores you can enter the following sequence of commands: |
<pre> | <pre> | ||
Use R::=ZZ/(32003)[x[1..9],h]; | Use R::=ZZ/(32003)[x[1..9],h]; |
Revision as of 10:45, 15 June 2012
Computes a Gröbner Bases over a prime field using the degree reverse lexicographic term ordering in parallel.
Syntax
$apcocoa/pgbc.ParallelGBC(Polys:LIST,Threads:INT):LIST;
Description
This command computed the Gröbner Basis of the ideal generated by Polys using the degree reverse lexicographic term ordering. The computation can be performed in parallel using Threads threads, at which the number of threads should be less or equal the number of processors/cores which are available on the used system.
Example
To compute the Gröbner Basis of F as defined below using two cores you can enter the following sequence of commands:
Use R::=ZZ/(32003)[x[1..9],h]; F:=[x[1]^2 + 2*x[2]^2 + 2*x[3]^2 + 2*x[4]^2 + 2*x[5]^2 + 2*x[6]^2 + 2*x[7]^2 + 2*x[8]^2 + 2*x[9]^2 - x[1]*h, 2*x[1]*x[2] + 2*x[2]*x[3] + 2*x[3]*x[4] + 2*x[4]*x[5] + 2*x[5]*x[6] + 2*x[6]*x[7] + 2*x[7]*x[8] + 2*x[8]*x[9]- x[2]*h, x[2]^2 + 2*x[1]*x[3] + 2*x[2]*x[4] + 2*x[3]*x[5] + 2*x[4]*x[6] + 2*x[5]*x[7] + 2*x[6]*x[8] + 2*x[7]*x[9] - x[3]*h, 2*x[2]*x[3] + 2*x[1]*x[4] + 2*x[2]*x[5] + 2*x[3]*x[6] + 2*x[4]*x[7] + 2*x[5]*x[8] + 2*x[6]*x[9] - x[4]*h, x[3]^2 + 2*x[2]*x[4] + 2*x[1]*x[5] + 2*x[2]*x[6] + 2*x[3]*x[7] + 2*x[4]*x[8] + 2*x[5]*x[9] - x[5]*h, 2*x[3]*x[4] + 2*x[2]*x[5] + 2*x[1]*x[6] + 2*x[2]*x[7] + 2*x[3]*x[8] + 2*x[4]*x[9] -x[6]*h, x[4]^2 + 2*x[3]*x[5] + 2*x[2]*x[6] + 2*x[1]*x[7] + 2*x[2]*x[8] + 2*x[3]*x[9] - x[7]*h, 2*x[4]*x[5] + 2*x[3]*x[6] + 2*x[2]*x[7] + 2*x[1]*x[8] + 2*x[2]*x[9] - x[8]*h, x[1] + 2*x[2] + 2*x[3] + 2*x[4] + 2*x[5] + 2*x[6] + 2*x[7] + 2*x[8] + 2*x[9] - h ]; G:=$apcocoa/pgbc.ParallelGBC(F,2);