Difference between revisions of "ApCoCoA-1:BBSGen.NonTriv"
From ApCoCoAWiki
Line 14: | Line 14: | ||
<itemize> | <itemize> | ||
− | <item>@para Order ideal OO, border BO, the number of indeterminates of the polynomial ring K[x_1,...,x_N] and the | + | <item>@para Order ideal OO, border BO, the number of indeterminates of the polynomial ring K[x_1,...,x_N] and the weight matrix(see <ref>BBSGen.Wmat</ref>). </item> |
− | </item> | ||
<item>@return List of non-trivial generators of the vanishing ideal of the border basis scheme. </item> | <item>@return List of non-trivial generators of the vanishing ideal of the border basis scheme. </item> | ||
</itemize> | </itemize> | ||
Line 23: | Line 22: | ||
Use R::=QQ[x[1..2]]; | Use R::=QQ[x[1..2]]; | ||
− | OO:= | + | OO:=$apcocoa/borderbasis.Box([1,1]); |
− | BO:= | + | BO:=$apcocoa/borderbasis.Border(OO); |
Mu:=Len(OO); | Mu:=Len(OO); | ||
Nu:=Len(BO); | Nu:=Len(BO); | ||
Line 93: | Line 92: | ||
<type>apcocoaserver</type> | <type>apcocoaserver</type> | ||
</types> | </types> | ||
− | |||
− | |||
<see>BBSGen.NonTriv</see> | <see>BBSGen.NonTriv</see> |
Revision as of 23:19, 14 June 2012
BBSGen.NonTriv
- This function computes the non-trivial polynomials of the generating set of the vanishing ideal of a border basis scheme.
Syntax
BBSGen.NonTriv(OO,BO,W,N); BBSGen.NonTriv(OO:LIST,BO:LIST,W:MATRIX,N:INT):LIST;
Description
@para Order ideal OO, border BO, the number of indeterminates of the polynomial ring K[x_1,...,x_N] and the weight matrix(see BBSGen.Wmat).
@return List of non-trivial generators of the vanishing ideal of the border basis scheme.
Example
Use R::=QQ[x[1..2]]; OO:=$apcocoa/borderbasis.Box([1,1]); BO:=$apcocoa/borderbasis.Border(OO); Mu:=Len(OO); Nu:=Len(BO); N:=Len(Indets()); W:=BBSGen.Wmat(OO,BO,N); Use XX::=QQ[c[1..Mu,1..Nu],t[1..N,1..N,1..Mu,1..Mu]]; Set Indentation; BBSGen.NonTriv(OO,BO,W,N); [ [ t[1,2,1,2], c[1,2]c[3,1] + c[1,4]c[4,1] - c[1,3], R :: Vector(1, 2)], [ t[1,2,1,3], -c[1,1]c[2,2] - c[1,3]c[4,2] + c[1,4], R :: Vector(2, 1)], [ t[1,2,1,4], -c[1,1]c[2,4] + c[1,2]c[3,3] + c[1,4]c[4,3] - c[1,3]c[4,4], R :: Vector(2, 2)], [ t[1,2,2,2], c[2,2]c[3,1] + c[2,4]c[4,1] - c[2,3], R :: Vector(1, 1)], [ t[1,2,2,3], -c[2,1]c[2,2] - c[2,3]c[4,2] - c[1,2] + c[2,4], R :: Vector(2, 0)], [ t[1,2,2,4], -c[2,1]c[2,4] + c[2,2]c[3,3] + c[2,4]c[4,3] - c[2,3]c[4,4] - c[1,4], R :: Vector(2, 1)], [ t[1,2,3,2], c[3,1]c[3,2] + c[3,4]c[4,1] + c[1,1] - c[3,3], R :: Vector(0, 2)], [ t[1,2,3,3], -c[2,2]c[3,1] - c[3,3]c[4,2] + c[3,4], R :: Vector(1, 1)], [ t[1,2,3,4], -c[2,4]c[3,1] + c[3,2]c[3,3] + c[3,4]c[4,3] - c[3,3]c[4,4] + c[1,3], R :: Vector(1, 2)], [ t[1,2,4,2], c[3,1]c[4,2] + c[4,1]c[4,4] + c[2,1] - c[4,3], R :: Vector(0, 1)], [ t[1,2,4,3], -c[2,2]c[4,1] - c[4,2]c[4,3] - c[3,2] + c[4,4], R :: Vector(1, 0)], [ t[1,2,4,4], -c[2,4]c[4,1] + c[3,3]c[4,2] + c[2,3] - c[3,4], R :: Vector(1, 1)]]