Difference between revisions of "ApCoCoA-1:BBSGen.TraceSyzLinStep"

From ApCoCoAWiki
(New page: <command> <title>BBSGen.TraceSyzStep</title> <short_description>: This function only computes the K[c_ij-]linear summand of trace syzygy polynomial for the degree of the given monomi...)
 
Line 1: Line 1:
 
<command>
 
<command>
 
   <title>BBSGen.TraceSyzStep</title>
 
   <title>BBSGen.TraceSyzStep</title>
   <short_description>: This function only computes the  K[c_ij-]linear summand of  trace syzygy polynomial for the degree of the given monomial.  
+
   <short_description>: This function computes the  K[c]-linear summand of the trace polynomial T_{Pi,X}  with respect to a  given term Pi and a variable from ring K[x_1,...,x_N].(see <ref>BBSGen.TraceSyzFull</ref>)
 
</short_description>
 
</short_description>
 
    
 
    
 
<syntax>
 
<syntax>
  
TraceSyzLin(OO,BO,N);
+
BBSGen.TraceSyzLin(Pi,X,OO,BO,N);
TraceSyzLin(OO:LIST,BO:LIST,N:INTEGER):POLY
+
BBSGen.TraceSyzLin(Pi:POLY,X:POLY,OO:LIST,BO:LIST,N:INTEGER):LIST
 
</syntax>
 
</syntax>
 
   <description>
 
   <description>
 
+
  Note the following:
Let  Tau^kl_ij :=t[k,l,i,j] be the (i,j) ^th entry of matrix the operation  [A_k,A_l].  The result of the Trace Syzygy computation is K[c]-linear combination of  Tau^kl_ij    that is equal to 0. This function  computes  only the K[c_ij]-linear summand of the  trace syzygy polynomial for the degree of the given monomial.  
+
  The chosen variable must be a divisor of the term Pi other wise the result is 0.
 +
  Pi must be a product of at least two different indeterminates.  
 +
 
  
  
 
<itemize>
 
<itemize>
   <item>@param  The Monomial Mon, the distinguished indterminate of choice,  order ideal OO, border BO, the number of Indeterminates of the Polynomial.
+
   <item>@param  The term Pi, the distinguished variable of choice that divides Pi,  order ideal OO, border BO, the number of Indeterminates of the Polynomial. (see <see>BB.Border</see> and  <see>BB.Box</see> from package borderbasis)
 
</item>
 
</item>
   <item>@return  K[c_ij]-linear summand of the  trace syzygy polynomial which is computed by help of the given monomial.</item>
+
   <item>@return  K[c]-linear summand of the  trace polynomial with respect to Pi and the variable  X.</item>
 
</itemize>
 
</itemize>
  
Line 29: Line 31:
 
Nu:=Len(BO);
 
Nu:=Len(BO);
  
Mon:=x[1]^2x[2];--------Target Monomial
+
Pi:=x[1]^2x[2];
  
X:=x[1];  ------------Choice of the Indeterminate
+
X:=x[1];  ------------Choice of the Variable
  
 
Use XX::=QQ[c[1..Mu,1..Nu],t[1..N,1..N,1..Mu,1..Mu]];  
 
Use XX::=QQ[c[1..Mu,1..Nu],t[1..N,1..N,1..Mu,1..Mu]];  
 
   
 
   
  BBSGen.TraceSyzLinStep(Mon,X,OO,BO,N);
+
  BBSGen.TraceSyzLinStep(Pi,X,OO,BO,N);
 
    
 
    
 
   
 
   
Line 48: Line 50:
 
     <type>apcocoaserver</type>
 
     <type>apcocoaserver</type>
 
   </types>
 
   </types>
<see>BB.Border</see>
+
 
  <see>BB.Box</see>
 
 
  <see>BBSGen.Wmat</see>
 
  <see>BBSGen.Wmat</see>
 
<see>BBSGen.TraceSyzLin</see>
 
<see>BBSGen.TraceSyzLin</see>

Revision as of 19:46, 8 June 2012

BBSGen.TraceSyzStep

This function computes the K[c]-linear summand of the trace polynomial T_{Pi,X} with respect to a given term Pi and a variable from ring K[x_1,...,x_N].(see BBSGen.TraceSyzFull)

Syntax

BBSGen.TraceSyzLin(Pi,X,OO,BO,N);
BBSGen.TraceSyzLin(Pi:POLY,X:POLY,OO:LIST,BO:LIST,N:INTEGER):LIST

Description

 Note the following:
 The chosen variable must be a divisor of the term Pi other wise the result is 0.
 Pi must be a product of at least two different indeterminates. 
 


  • @param The term Pi, the distinguished variable of choice that divides Pi, order ideal OO, border BO, the number of Indeterminates of the Polynomial. (see

    BB.Border

    and

    BB.Box

    from package borderbasis)

  • @return K[c]-linear summand of the trace polynomial with respect to Pi and the variable X.


Example

Use R::=QQ[x[1..2]];

OO:=BB.Box([1,1]);
BO:=BB.Border(OO);
Mu:=Len(OO);
Nu:=Len(BO);

Pi:=x[1]^2x[2];

X:=x[1];   ------------Choice of the Variable

Use XX::=QQ[c[1..Mu,1..Nu],t[1..N,1..N,1..Mu,1..Mu]]; 
 
 BBSGen.TraceSyzLinStep(Pi,X,OO,BO,N);
  
 
 t[1,2,1,3] + t[1,2,2,4]

-------------------------------


BBSGen.Wmat

BBSGen.TraceSyzLin

BBSGen.TraceSyzStep

BBSGen.TraceSyzFull