Difference between revisions of "ApCoCoA-1:BBSGen.TraceSyzStep"
From ApCoCoAWiki
Line 1: | Line 1: | ||
<command> | <command> | ||
<title>BBSGen.TraceSyzStep</title> | <title>BBSGen.TraceSyzStep</title> | ||
− | <short_description>: This function | + | <short_description>: This function computes the trace polynomial with respect to a given term and a variable.(see <ref>BBSGen.TraceSyzFull</ref>) |
</short_description> | </short_description> | ||
<syntax> | <syntax> | ||
− | + | BBSGen.TraceSyzStep(OO,BO,N); | |
− | + | BBSGen.TraceSyzStep(Pi:POLY,X:POLY,OO:LIST,BO:LIST,N:INTEGER):LIST | |
</syntax> | </syntax> | ||
<description> | <description> | ||
− | + | Note that the chosen variable must be a divisor of the term Mon. | |
− | |||
− | |||
<itemize> | <itemize> | ||
− | <item>@param The | + | <item>@param The term Pi from K[x_1,...,x_N], the distinguished variable of choice from {x_1,...,x_N}, order ideal OO, border BO, the number of Indeterminates of the Polynomial.(see <see>BB.Border</see> |
+ | <see>BB.Box</see> from package borderbasis) | ||
</item> | </item> | ||
− | <item>@return Trace | + | <item>@return Trace polynomial with respect to a term Mon and a variable X.</item> |
</itemize> | </itemize> | ||
Line 29: | Line 28: | ||
Nu:=Len(BO); | Nu:=Len(BO); | ||
− | + | Pi:=x[1]^2x[2]; | |
X:=x[1]; ------------Choice of the Indeterminate | X:=x[1]; ------------Choice of the Indeterminate | ||
Line 35: | Line 34: | ||
Use XX::=QQ[c[1..Mu,1..Nu],t[1..N,1..N,1..Mu,1..Mu]]; | Use XX::=QQ[c[1..Mu,1..Nu],t[1..N,1..N,1..Mu,1..Mu]]; | ||
− | BBSGen.TraceSyzStep( | + | BBSGen.TraceSyzStep(Pi,X,OO,BO,N); |
− | + | c[1,2]t[1,2,3,1] + c[2,2]t[1,2,3,2] + | |
− | + | c[3,2]t[1,2,3,3] + c[4,2]t[1,2,3,4] + | |
− | c[3,4]t[1,2,4,3] + c[4,4]t[1,2,4,4] + | + | c[1,4]t[1,2,4,1] + c[2,4]t[1,2,4,2] + |
+ | c[3,4]t[1,2,4,3] + c[4,4]t[1,2,4,4] + | ||
t[1,2,1,3] + t[1,2,2,4] | t[1,2,1,3] + t[1,2,2,4] | ||
Line 50: | Line 50: | ||
<type>apcocoaserver</type> | <type>apcocoaserver</type> | ||
</types> | </types> | ||
− | + | ||
− | |||
<see>BBSGen.Wmat</see> | <see>BBSGen.Wmat</see> | ||
<see>BBSGen.TraceSyzLin</see> | <see>BBSGen.TraceSyzLin</see> |
Revision as of 19:14, 8 June 2012
BBSGen.TraceSyzStep
- This function computes the trace polynomial with respect to a given term and a variable.(see BBSGen.TraceSyzFull)
Syntax
BBSGen.TraceSyzStep(OO,BO,N); BBSGen.TraceSyzStep(Pi:POLY,X:POLY,OO:LIST,BO:LIST,N:INTEGER):LIST
Description
Note that the chosen variable must be a divisor of the term Mon.
@param The term Pi from K[x_1,...,x_N], the distinguished variable of choice from {x_1,...,x_N}, order ideal OO, border BO, the number of Indeterminates of the Polynomial.(see
from package borderbasis)
@return Trace polynomial with respect to a term Mon and a variable X.
Example
Use R::=QQ[x[1..2]]; OO:=BB.Box([1,1]); BO:=BB.Border(OO); Mu:=Len(OO); Nu:=Len(BO); Pi:=x[1]^2x[2]; X:=x[1]; ------------Choice of the Indeterminate Use XX::=QQ[c[1..Mu,1..Nu],t[1..N,1..N,1..Mu,1..Mu]]; BBSGen.TraceSyzStep(Pi,X,OO,BO,N); c[1,2]t[1,2,3,1] + c[2,2]t[1,2,3,2] + c[3,2]t[1,2,3,3] + c[4,2]t[1,2,3,4] + c[1,4]t[1,2,4,1] + c[2,4]t[1,2,4,2] + c[3,4]t[1,2,4,3] + c[4,4]t[1,2,4,4] + t[1,2,1,3] + t[1,2,2,4] -------------------------------