Difference between revisions of "ApCoCoA-1:BBSGen.Poldeg"
From ApCoCoAWiki
Line 1: | Line 1: | ||
<command> | <command> | ||
<title>BBSGen.PolDeg</title> | <title>BBSGen.PolDeg</title> | ||
− | <short_description>: This function computes the arrow degree of a given homogenous polynomial from the ring K[c | + | <short_description>: This function computes the arrow degree of a given homogenous polynomial from the ring K[c].(see <ref>BBSGen.WMat</ref>) |
Line 14: | Line 14: | ||
<itemize> | <itemize> | ||
− | <item>@param A homogeneous polynomial with respect to the arrow grading from the ring K[ | + | <item>@param A homogeneous polynomial with respect to the arrow grading from the ring K[c], order ideal OO, border BO,number of indeterminates of the polynomial ring K[x_1,...,x_n] and the degree matrix.(see <commandref>BB.Border</commandref> from the package borderbasis) |
</item> | </item> | ||
<item>@return Degree vector of the given homogenous polynomial wrt. the arrow grading . </item> | <item>@return Degree vector of the given homogenous polynomial wrt. the arrow grading . </item> | ||
Line 25: | Line 25: | ||
OO:=BB.Box([1,1]); | OO:=BB.Box([1,1]); | ||
BO:=BB.Border(OO); | BO:=BB.Border(OO); | ||
− | |||
Mu:=Len(OO); | Mu:=Len(OO); | ||
Nu:=Len(BO); | Nu:=Len(BO); | ||
N:=Len(Indets()); | N:=Len(Indets()); | ||
+ | W:=BBSGen.Wmat(OO,BO,N); | ||
Use XX::=QQ[c[1..Mu,1..Nu],t[1..N,1..N,1..Mu,1..Mu]]; | Use XX::=QQ[c[1..Mu,1..Nu],t[1..N,1..N,1..Mu,1..Mu]]; | ||
Line 46: | Line 46: | ||
<type>apcocoaserver</type> | <type>apcocoaserver</type> | ||
</types> | </types> | ||
− | + | ||
− | |||
<see>BBSGen.Wmat</see> | <see>BBSGen.Wmat</see> | ||
Revision as of 12:17, 8 June 2012
BBSGen.PolDeg
- This function computes the arrow degree of a given homogenous polynomial from the ring K[c].(see BBSGen.WMat)
Syntax
BBSGen. Poldeg(F,OO,BO,N,W); BBSGen.Poldeg(F:POLY,OO:LIST,BO:LIST,N:INT,W:MAT):VECTOR;
Description
@param A homogeneous polynomial with respect to the arrow grading from the ring K[c], order ideal OO, border BO,number of indeterminates of the polynomial ring K[x_1,...,x_n] and the degree matrix.(see <commandref>BB.Border</commandref> from the package borderbasis)
@return Degree vector of the given homogenous polynomial wrt. the arrow grading .
Example
Use R::=QQ[x[1..2]]; OO:=BB.Box([1,1]); BO:=BB.Border(OO); Mu:=Len(OO); Nu:=Len(BO); N:=Len(Indets()); W:=BBSGen.Wmat(OO,BO,N); Use XX::=QQ[c[1..Mu,1..Nu],t[1..N,1..N,1..Mu,1..Mu]]; F:= c[2,4]c[4,1] - c[3,3]c[4,2] - c[2,3] + c[3,4]; BBSGen.Poldeg(F,OO,BO,N,W); R :: Vector(1, 1)