Difference between revisions of "ApCoCoA-1:BBSGen.Poldeg"

From ApCoCoAWiki
Line 1: Line 1:
 
<command>
 
<command>
 
   <title>BBSGen.PolDeg</title>
 
   <title>BBSGen.PolDeg</title>
   <short_description>: This function computes the arrow degree of a given homogenous polynomial from the ring K[c[i,j]].
+
   <short_description>: This function computes the arrow degree of a given homogenous polynomial from the ring K[c].(see <ref>BBSGen.WMat</ref>)
 
    
 
    
 
              
 
              
Line 14: Line 14:
  
 
<itemize>
 
<itemize>
   <item>@param A homogeneous polynomial with respect to the arrow grading from the ring K[c_ij], order ideal OO, border BO,number of indeterminates of the polynomial ring K[x_1,...,x_n] and the degree matrix.
+
   <item>@param A homogeneous polynomial with respect to the arrow grading from the ring K[c], order ideal OO, border BO,number of indeterminates of the polynomial ring K[x_1,...,x_n] and the degree matrix.(see <commandref>BB.Border</commandref> from the package borderbasis)
 
</item>
 
</item>
 
   <item>@return Degree vector of the given homogenous polynomial wrt. the arrow grading .  </item>
 
   <item>@return Degree vector of the given homogenous polynomial wrt. the arrow grading .  </item>
Line 25: Line 25:
 
OO:=BB.Box([1,1]);
 
OO:=BB.Box([1,1]);
 
BO:=BB.Border(OO);
 
BO:=BB.Border(OO);
W:=BBSGen.Wmat(OO,BO,N);
 
 
Mu:=Len(OO);
 
Mu:=Len(OO);
 
Nu:=Len(BO);
 
Nu:=Len(BO);
 
N:=Len(Indets());
 
N:=Len(Indets());
 +
W:=BBSGen.Wmat(OO,BO,N);
 
Use XX::=QQ[c[1..Mu,1..Nu],t[1..N,1..N,1..Mu,1..Mu]];  
 
Use XX::=QQ[c[1..Mu,1..Nu],t[1..N,1..N,1..Mu,1..Mu]];  
  
Line 46: Line 46:
 
     <type>apcocoaserver</type>
 
     <type>apcocoaserver</type>
 
   </types>
 
   </types>
<see>BB.Border</see>
+
 
  <see>BB.Box</see>
 
 
  <see>BBSGen.Wmat</see>
 
  <see>BBSGen.Wmat</see>
  

Revision as of 12:17, 8 June 2012

BBSGen.PolDeg

This function computes the arrow degree of a given homogenous polynomial from the ring K[c].(see BBSGen.WMat)


Syntax

BBSGen. Poldeg(F,OO,BO,N,W);
BBSGen.Poldeg(F:POLY,OO:LIST,BO:LIST,N:INT,W:MAT):VECTOR;  

Description


  • @param A homogeneous polynomial with respect to the arrow grading from the ring K[c], order ideal OO, border BO,number of indeterminates of the polynomial ring K[x_1,...,x_n] and the degree matrix.(see <commandref>BB.Border</commandref> from the package borderbasis)

  • @return Degree vector of the given homogenous polynomial wrt. the arrow grading .


Example

Use R::=QQ[x[1..2]];

OO:=BB.Box([1,1]);
BO:=BB.Border(OO);
Mu:=Len(OO);
Nu:=Len(BO);
N:=Len(Indets());
W:=BBSGen.Wmat(OO,BO,N);
Use XX::=QQ[c[1..Mu,1..Nu],t[1..N,1..N,1..Mu,1..Mu]]; 

F:= c[2,4]c[4,1] - c[3,3]c[4,2] - c[2,3] + c[3,4]; 

BBSGen.Poldeg(F,OO,BO,N,W);

R :: Vector(1, 1)




BBSGen.Wmat

BBSGen.NonTriv

BBSGen.BBFinder