Difference between revisions of "ApCoCoA-1:BBSGen.NonStand"

From ApCoCoAWiki
Line 1: Line 1:
 
<command>
 
<command>
 
   <title>BBSGen.Wmat</title>
 
   <title>BBSGen.Wmat</title>
   <short_description>This function computes the non-standard Indeterminates with respect to the arrow grading in the Coordinate Ring of Border Basis Scheme. </short_description>
+
   <short_description>This function computes the non-standard Indeterminates from K[c] with respect to the arrow grading. </short_description>
 
    
 
    
 
<syntax>
 
<syntax>
Line 8: Line 8:
 
</syntax>
 
</syntax>
 
   <description>
 
   <description>
 +
Let W be the weight matrix with respect to the arrow grading.(see <ref>BBSGen.Wmat</ref>)An indeterminate c_ij\in K[c] is called standard, if deg_W(c_ij)=log(b_j)-log(t_i)
 +
has exactly one  strictly positive component. If c_ij is not standard then it is called non-standard. This function computes such non-standard indeterminates from ring K[c].
  
 
<itemize>
 
<itemize>
   <item>@param The order ideal OO, the border BO the number of Indeterminates of the Polynomial Ring and the Weight Matrix.</item>
+
   <item>@param The order ideal OO, the border BO the number of Indeterminates of the Polynomial Ring and the Weight Matrix. (see <commandref>BB.Border</commandref> from the package borderbasis)</item>
   <item>@return List of Indeterminates and their degree wrt. the arrow grading.  </item>
+
   <item>@return List of Indeterminates and their degree with respect to  the arrow grading.  </item>
 
</itemize>
 
</itemize>
  
Line 18: Line 20:
 
Use R::=QQ[x[1..2]];
 
Use R::=QQ[x[1..2]];
  
OO:=BB.Box([1,1]);
+
OO:=$apcocoa/borderbasis.Box([1,1]);
BO:=BB.Border(OO);
+
BO:=$apcocoa/borderbasis.Border(OO); 
 +
N:=Len(Indets());
 
  W:=BBSGen.Wmat(OO,BO,N);
 
  W:=BBSGen.Wmat(OO,BO,N);
  
 +
XX::=QQ[c[1..Mu,1..Nu],t[1..N,1..N,1..Mu,1..Mu]];
 +
Use XX;
  
  
Line 30: Line 35:
 
  [c[2,3], [R :: 1, R :: 1]],  
 
  [c[2,3], [R :: 1, R :: 1]],  
 
[c[3,4], [R :: 1, R :: 1]]]
 
[c[3,4], [R :: 1, R :: 1]]]
 +
 
 +
  
 
</example>
 
</example>
Line 38: Line 45:
 
     <type>list</type>
 
     <type>list</type>
 
   </types>
 
   </types>
<see>BB.Border</see>
+
 
  <see>BB.Box</see>
 
 
<see> BBSGen.Wmat</see>
 
<see> BBSGen.Wmat</see>
 
   <key>Wmat</key>
 
   <key>Wmat</key>

Revision as of 09:42, 8 June 2012

BBSGen.Wmat

This function computes the non-standard Indeterminates from K[c] with respect to the arrow grading.

Syntax

NonStand(OO,BO,N,W);
NonStand(OO:LIST,BO:LIST,N:INTEGER,W:MATRIX):LIST

Description

Let W be the weight matrix with respect to the arrow grading.(see BBSGen.Wmat)An indeterminate c_ij\in K[c] is called standard, if deg_W(c_ij)=log(b_j)-log(t_i)

has exactly one  strictly positive component. If c_ij is not standard then it is called non-standard. This function computes such non-standard indeterminates from ring K[c].
  • @param The order ideal OO, the border BO the number of Indeterminates of the Polynomial Ring and the Weight Matrix. (see <commandref>BB.Border</commandref> from the package borderbasis)

  • @return List of Indeterminates and their degree with respect to the arrow grading.


Example

Use R::=QQ[x[1..2]];

OO:=$apcocoa/borderbasis.Box([1,1]);
BO:=$apcocoa/borderbasis.Border(OO);   
N:=Len(Indets());
 W:=BBSGen.Wmat(OO,BO,N);

XX::=QQ[c[1..Mu,1..Nu],t[1..N,1..N,1..Mu,1..Mu]]; 
Use XX;


BBSGen.NonStand(OO,BO,N,W);

[[c[1,3], [R :: 1, R :: 2]], 
[c[1,4], [R :: 2, R :: 1]],
 [c[2,3], [R :: 1, R :: 1]], 
[c[3,4], [R :: 1, R :: 1]]]
  




BBSGen.Wmat