Difference between revisions of "ApCoCoA-1:NC.IsGB"
Line 13: | Line 13: | ||
<itemize> | <itemize> | ||
<item>@param <em>G</em>: a LIST of non-zero polynomials in <tt>K<X></tt>. Each polynomial is represented as a LIST of monomials, which are pairs of the form [C, W] where W is a word in <tt><X></tt> and C is the coefficient of W. For example, the polynomial <tt>F=xy-y+1</tt> is represented as F:=[[1,<quotes>xy</quotes>], [-1, <quotes>y</quotes>], [1,<quotes></quotes>]].</item> | <item>@param <em>G</em>: a LIST of non-zero polynomials in <tt>K<X></tt>. Each polynomial is represented as a LIST of monomials, which are pairs of the form [C, W] where W is a word in <tt><X></tt> and C is the coefficient of W. For example, the polynomial <tt>F=xy-y+1</tt> is represented as F:=[[1,<quotes>xy</quotes>], [-1, <quotes>y</quotes>], [1,<quotes></quotes>]].</item> | ||
− | <item>@return: a BOOL value which is True if <tt>G</tt> is a Groebner basis w.r.t. current ordering and False otherwise.</item> | + | <item>@return: a BOOL value which is True if <tt>G</tt> is a Groebner basis w.r.t. the current ordering and False otherwise.</item> |
</itemize> | </itemize> | ||
<example> | <example> |
Revision as of 09:09, 8 June 2012
NC.IsGB
Check whether a list of non-zero polynomials over a free monoid ring is a Groebner basis.
Syntax
NC.IsGB(G:LIST):BOOL
Description
Please note: The function(s) explained on this page is/are using the ApCoCoAServer. You will have to start the ApCoCoAServer in order to use it/them.
Please set ring environment coefficient field K, alphabet (or set of indeterminates) X and ordering via the functions NC.SetFp, NC.SetX and NC.SetOrdering, respectively, before calling the function. The default coefficient field is Q. The default ordering is length-lexicographic ordering ("LLEX"). For more information, please check the relevant functions.
@param G: a LIST of non-zero polynomials in K<X>. Each polynomial is represented as a LIST of monomials, which are pairs of the form [C, W] where W is a word in <X> and C is the coefficient of W. For example, the polynomial F=xy-y+1 is represented as F:=[[1,"xy"], [-1, "y"], [1,""]].
@return: a BOOL value which is True if G is a Groebner basis w.r.t. the current ordering and False otherwise.
Example
NC.SetX(<quotes>xyt</quotes>); F1 := [[1,<quotes>xx</quotes>], [-1,<quotes>yx</quotes>]]; F2 := [[1,<quotes>xy</quotes>], [-1,<quotes>ty</quotes>]]; F3 := [[1,<quotes>xt</quotes>], [-1, <quotes>tx</quotes>]]; F4 := [[1,<quotes>yt</quotes>], [-1, <quotes>ty</quotes>]]; G := [F1, F2,F3,F4]; NC.IsGB(G); -- LLEX ordering (default ordering) False ------------------------------- NC.SetOrdering(<quotes>ELIM</quotes>); NC.IsGB(G); False -------------------------------
See also