Difference between revisions of "ApCoCoA-1:BBSGen.JacobiFull"
From ApCoCoAWiki
(New page: <command> <title>BBSGen.TraceSyzStep</title> <short_description>: This function computes the entries of the Jacobi identity [ A_i[A_k,A_l ] ]+[ A_k[ A_l,A_i]] +[ A_l[A_i,A_k ] ]=0 , ...) |
|||
Line 1: | Line 1: | ||
<command> | <command> | ||
<title>BBSGen.TraceSyzStep</title> | <title>BBSGen.TraceSyzStep</title> | ||
− | <short_description>: This function computes the entries of the Jacobi identity | + | <short_description>: This function computes the entries of the Jacobi identity matrix J^klm [ A_m[A_k,A_l ] ]+[ A_k[ A_l,A_m]] +[ A_l[A_m,A_k ] ]=0 , where m,k,l is from {1...n}. |
</short_description> | </short_description> | ||
<syntax> | <syntax> | ||
− | JacobiFull(OO,BO,N); | + | BBSGen.JacobiFull(OO,BO,N); |
− | JacobiFull(OO:LIST,BO:LIST,N:INTEGER):MATRIX | + | BBSGen.JacobiFull(OO:LIST,BO:LIST,N:INTEGER):MATRIX |
</syntax> | </syntax> | ||
<description> | <description> | ||
− | Let R=K[x_1,...,x_n] and A_i | + | Let R=K[x_1,...,x_n] and A_i be the generic multiplication matrix associated to x_i. Let Tau^kl_ij be the polynomial in the (i,j) position of the [A_k,A_l] where k,l \in {1,..,n}. |
+ | |||
+ | This function computes the entries of the Jacobi identity J^{ikl}= [ A_i[A_k,A_l ] ]+[ A_k[ A_l,A_i]] +[ A_l[A_i,A_k ] ]=0 , where i,k,l is from {1...n} and during the computation entries of the commutators Tau^kl_ij will be considered as indeterminates t[k,l,i,j]\in XX. | ||
+ | |||
+ | When the polynomial entries of the above matrix are large, one may not have a result. In that case we recommend JacobiStep or JacobiLin. | ||
Please note that this function does not work for the case, where n=2. | Please note that this function does not work for the case, where n=2. | ||
Line 35: | Line 39: | ||
Use XX::=QQ[c[1..Mu,1..Nu],t[1..N,1..N,1..Mu,1..Mu]]; | Use XX::=QQ[c[1..Mu,1..Nu],t[1..N,1..N,1..Mu,1..Mu]]; | ||
− | BBSGen. | + | BBSGen.JacobiFull(OO,BO,N); |
[[ [c[1,1]t[1,2,1,1] + c[1,3]t[1,2,2,1] + c[1,2]t[1,3,1,1] + c[1,4]t[1,3,2,1] + c[1,5]t[2,3,2,1], | [[ [c[1,1]t[1,2,1,1] + c[1,3]t[1,2,2,1] + c[1,2]t[1,3,1,1] + c[1,4]t[1,3,2,1] + c[1,5]t[2,3,2,1], |
Revision as of 21:53, 7 June 2012
BBSGen.TraceSyzStep
- This function computes the entries of the Jacobi identity matrix J^klm [ A_m[A_k,A_l ] ]+[ A_k[ A_l,A_m]] +[ A_l[A_m,A_k ] ]=0 , where m,k,l is from {1...n}.
Syntax
BBSGen.JacobiFull(OO,BO,N); BBSGen.JacobiFull(OO:LIST,BO:LIST,N:INTEGER):MATRIX
Description
Let R=K[x_1,...,x_n] and A_i be the generic multiplication matrix associated to x_i. Let Tau^kl_ij be the polynomial in the (i,j) position of the [A_k,A_l] where k,l \in {1,..,n}.
This function computes the entries of the Jacobi identity J^{ikl}= [ A_i[A_k,A_l ] ]+[ A_k[ A_l,A_i]] +[ A_l[A_i,A_k ] ]=0 , where i,k,l is from {1...n} and during the computation entries of the commutators Tau^kl_ij will be considered as indeterminates t[k,l,i,j]\in XX.
When the polynomial entries of the above matrix are large, one may not have a result. In that case we recommend JacobiStep or JacobiLin.
Please note that this function does not work for the case, where n=2.
@param Order ideal OO, border BO, the number of Indeterminates of the Polynomial.
@return The entries of the Jacobi Identity J^{ikl}. .
Example
Use R::=QQ[x[1..3]]; OO:=[1,x[1]]; BO:=BB.Border(OO); Mu:=Len(OO); Nu:=Len(BO); N:=Len(Indets()); Use XX::=QQ[c[1..Mu,1..Nu],t[1..N,1..N,1..Mu,1..Mu]]; BBSGen.JacobiFull(OO,BO,N); [[ [c[1,1]t[1,2,1,1] + c[1,3]t[1,2,2,1] + c[1,2]t[1,3,1,1] + c[1,4]t[1,3,2,1] + c[1,5]t[2,3,2,1], c[1,1]t[1,2,1,2] + c[1,3]t[1,2,2,2] + c[1,2]t[1,3,1,2] + c[1,4]t[1,3,2,2] + c[1,5]t[2,3,2,2]], [ c[2,1]t[1,2,1,1] + c[2,3]t[1,2,2,1] + c[2,2]t[1,3,1,1] + c[2,4]t[1,3,2,1] + c[2,5]t[2,3,2,1] + t[2,3,1,1], c[2,1]t[1,2,1,2] + c[2,3]t[1,2,2,2] + c[2,2]t[1,3,1,2] + c[2,4]t[1,3,2,2] + c[2,5]t[2,3,2,2] + t[2,3,1,2]]]]