Difference between revisions of "ApCoCoA-1:BBSGen.Wmat"

From ApCoCoAWiki
Line 9: Line 9:
 
</syntax>
 
</syntax>
 
   <description>
 
   <description>
 +
Let c_ij be an indeterminate from the Ring K[c_ij]. Let OO be an order ideal and BO be its border. Let Mu:=Len(OO) and Nu:=Len(BO). Let $m$ be an integer that is equal to Mu*Nu.  The ring K[c_{ij}] is Z^{m}-graded if we define  deg_{W}(c_{ij})=log(b_{j})-log(t_{i})=(u_{1},...,u_{m})=u\in Z^{m},  where W is the grading matrix.
 +
We shall name this  grading the arrow grading. The Function <ref>WMat(OO,BO,N)<\ref> computes this grading matrix.
  
 
<itemize>
 
<itemize>

Revision as of 21:37, 7 June 2012

BBSGen.Wmat

This function computes the Weight Matrix with respect to the arrow grading.

Syntax

WMat(OO,BO,N):
WMat(OO:LIST,BO:LIST,N:INTEGER):MATRIX

Description

Let c_ij be an indeterminate from the Ring K[c_ij]. Let OO be an order ideal and BO be its border. Let Mu:=Len(OO) and Nu:=Len(BO). Let $m$ be an integer that is equal to Mu*Nu. The ring K[c_{ij}] is Z^{m}-graded if we define deg_{W}(c_{ij})=log(b_{j})-log(t_{i})=(u_{1},...,u_{m})=u\in Z^{m}, where W is the grading matrix.

We shall name this grading the arrow grading. The Function <ref>WMat(OO,BO,N)<\ref> computes this grading matrix.

  • @param The order ideal OO, the border BO and the number of Indeterminates of the Polynomial Ring.

  • @return Weight Matrix.


Example

Use R::=QQ[x[1..2]];
OO:=BB.Box([1,1]); 
BO:=BB.Border(OO);
N:=Len(Indets());
----------------------
W:=Wmat(OO,BO,N); 
W;

Mat([
  [0, 2, 1, 2, 0, 2, 1, 2, -1, 1, 0, 1, -1, 1, 0, 1],
  [2, 0, 2, 1, 1, -1, 1, 0, 2, 0, 2, 1, 1, -1, 1, 0]
])



BB.Border

BB.Box