Difference between revisions of "ApCoCoA-1:BBSGen.NonTriv"
From ApCoCoAWiki
Line 5: | Line 5: | ||
</short_description> | </short_description> | ||
− | |||
− | |||
<syntax> | <syntax> | ||
Line 14: | Line 12: | ||
<description> | <description> | ||
+ | The functions from the package borderbasis <ref>BB.Box</ref>, <ref>BBSGen.Wmat</ref> must be used as input. | ||
+ | |||
<itemize> | <itemize> | ||
<item>@para Order ideal OO, border BO, the number of Indeterminates of the Polynomial Ring and the Weight Matrix. | <item>@para Order ideal OO, border BO, the number of Indeterminates of the Polynomial Ring and the Weight Matrix. | ||
Line 99: | Line 99: | ||
<see>BBSGen.NonTriv</see> | <see>BBSGen.NonTriv</see> | ||
<see>BBSGen.Poldeg</see> | <see>BBSGen.Poldeg</see> | ||
− | |||
<key>BBSGen.Wmat</key> | <key>BBSGen.Wmat</key> | ||
− | <key> | + | <key>BBSGen.Wmat</key> |
<wiki-category>Package_bbsmingensys</wiki-category> | <wiki-category>Package_bbsmingensys</wiki-category> | ||
</command> | </command> |
Revision as of 18:04, 7 June 2012
BBSGen.NonTriv
- This function computes the non-trivial polynomials of the generating set \tau of the vanishing ideal of a border basis scheme.
Syntax
BBSGen.NonTriv(OO,BO,W,N); BBSGen.NonTriv(OO:LIST,BO:LIST,W:MATRIX,N:INT):LIST;
Description
The functions from the package borderbasis BB.Box, BBSGen.Wmat must be used as input.
@para Order ideal OO, border BO, the number of Indeterminates of the Polynomial Ring and the Weight Matrix.
@return List of non-trivial generators of the vanishing ideal of the border basis scheme.
Example
Use R::=QQ[x[1..2]]; OO:=BB.Box([1,1]); BO:=BB.Border(OO); W:=BBSGen.Wmat(OO,BO,N); Mu:=Len(OO); Nu:=Len(BO); N:=Len(Indets()); Use XX::=QQ[c[1..Mu,1..Nu],t[1..N,1..N,1..Mu,1..Mu]]; Set Indentation; BBSGen.NonTriv(OO,BO,W,N); [ [ t[1,2,1,2], c[1,2]c[3,1] + c[1,4]c[4,1] - c[1,3], R :: Vector(1, 2)], [ t[1,2,1,3], -c[1,1]c[2,2] - c[1,3]c[4,2] + c[1,4], R :: Vector(2, 1)], [ t[1,2,1,4], -c[1,1]c[2,4] + c[1,2]c[3,3] + c[1,4]c[4,3] - c[1,3]c[4,4], R :: Vector(2, 2)], [ t[1,2,2,2], c[2,2]c[3,1] + c[2,4]c[4,1] - c[2,3], R :: Vector(1, 1)], [ t[1,2,2,3], -c[2,1]c[2,2] - c[2,3]c[4,2] - c[1,2] + c[2,4], R :: Vector(2, 0)], [ t[1,2,2,4], -c[2,1]c[2,4] + c[2,2]c[3,3] + c[2,4]c[4,3] - c[2,3]c[4,4] - c[1,4], R :: Vector(2, 1)], [ t[1,2,3,2], c[3,1]c[3,2] + c[3,4]c[4,1] + c[1,1] - c[3,3], R :: Vector(0, 2)], [ t[1,2,3,3], -c[2,2]c[3,1] - c[3,3]c[4,2] + c[3,4], R :: Vector(1, 1)], [ t[1,2,3,4], -c[2,4]c[3,1] + c[3,2]c[3,3] + c[3,4]c[4,3] - c[3,3]c[4,4] + c[1,3], R :: Vector(1, 2)], [ t[1,2,4,2], c[3,1]c[4,2] + c[4,1]c[4,4] + c[2,1] - c[4,3], R :: Vector(0, 1)], [ t[1,2,4,3], -c[2,2]c[4,1] - c[4,2]c[4,3] - c[3,2] + c[4,4], R :: Vector(1, 0)], [ t[1,2,4,4], -c[2,4]c[4,1] + c[3,3]c[4,2] + c[2,3] - c[3,4], R :: Vector(1, 1)]]