Difference between revisions of "ApCoCoA-1:BBSGen.NonTriv"

From ApCoCoAWiki
Line 5: Line 5:
 
  </short_description>
 
  </short_description>
  
The functions  from the package borderbasis <ref>BB.Box</ref>, <ref>BBSGen.Wmat</ref> must be used as input.
 
 
 
 
<syntax>
 
<syntax>
  
Line 14: Line 12:
 
   <description>
 
   <description>
  
 +
The functions  from the package borderbasis <ref>BB.Box</ref>, <ref>BBSGen.Wmat</ref> must be used as input.
 +
 
 
<itemize>
 
<itemize>
 
   <item>@para Order ideal OO, border BO, the number of Indeterminates of the Polynomial Ring and the Weight Matrix.
 
   <item>@para Order ideal OO, border BO, the number of Indeterminates of the Polynomial Ring and the Weight Matrix.
Line 99: Line 99:
 
<see>BBSGen.NonTriv</see>
 
<see>BBSGen.NonTriv</see>
 
<see>BBSGen.Poldeg</see>
 
<see>BBSGen.Poldeg</see>
  <key>Wmat</key>
 
 
   <key>BBSGen.Wmat</key>
 
   <key>BBSGen.Wmat</key>
   <key>bbsmingensys.Wmat</key>
+
   <key>BBSGen.Wmat</key>
 
   <wiki-category>Package_bbsmingensys</wiki-category>
 
   <wiki-category>Package_bbsmingensys</wiki-category>
 
</command>
 
</command>

Revision as of 18:04, 7 June 2012

BBSGen.NonTriv

This function computes the non-trivial polynomials of the generating set \tau of the vanishing ideal of a border basis scheme.


Syntax

BBSGen.NonTriv(OO,BO,W,N);
BBSGen.NonTriv(OO:LIST,BO:LIST,W:MATRIX,N:INT):LIST;

Description


The functions from the package borderbasis BB.Box, BBSGen.Wmat must be used as input.

  • @para Order ideal OO, border BO, the number of Indeterminates of the Polynomial Ring and the Weight Matrix.

  • @return List of non-trivial generators of the vanishing ideal of the border basis scheme.


Example

Use R::=QQ[x[1..2]];

OO:=BB.Box([1,1]);
BO:=BB.Border(OO);
W:=BBSGen.Wmat(OO,BO,N);
Mu:=Len(OO);
Nu:=Len(BO);
N:=Len(Indets());
Use XX::=QQ[c[1..Mu,1..Nu],t[1..N,1..N,1..Mu,1..Mu]]; 

Set Indentation;

BBSGen.NonTriv(OO,BO,W,N);
[
  [
    t[1,2,1,2],
    c[1,2]c[3,1] + c[1,4]c[4,1] - c[1,3],
    R :: Vector(1, 2)],
  [
    t[1,2,1,3],
    -c[1,1]c[2,2] - c[1,3]c[4,2] + c[1,4],
    R :: Vector(2, 1)],
  [
    t[1,2,1,4],
    -c[1,1]c[2,4] + c[1,2]c[3,3] + c[1,4]c[4,3] - c[1,3]c[4,4],
    R :: Vector(2, 2)],
  [
    t[1,2,2,2],
    c[2,2]c[3,1] + c[2,4]c[4,1] - c[2,3],
    R :: Vector(1, 1)],
  [
    t[1,2,2,3],
    -c[2,1]c[2,2] - c[2,3]c[4,2] - c[1,2] + c[2,4],
    R :: Vector(2, 0)],
  [
    t[1,2,2,4],
    -c[2,1]c[2,4] + c[2,2]c[3,3] + c[2,4]c[4,3] - c[2,3]c[4,4] - c[1,4],
    R :: Vector(2, 1)],
  [
    t[1,2,3,2],
    c[3,1]c[3,2] + c[3,4]c[4,1] + c[1,1] - c[3,3],
    R :: Vector(0, 2)],
  [
    t[1,2,3,3],
    -c[2,2]c[3,1] - c[3,3]c[4,2] + c[3,4],
    R :: Vector(1, 1)],
  [
    t[1,2,3,4],
    -c[2,4]c[3,1] + c[3,2]c[3,3] + c[3,4]c[4,3] - c[3,3]c[4,4] + c[1,3],
    R :: Vector(1, 2)],
  [
    t[1,2,4,2],
    c[3,1]c[4,2] + c[4,1]c[4,4] + c[2,1] - c[4,3],
    R :: Vector(0, 1)],
  [
    t[1,2,4,3],
    -c[2,2]c[4,1] - c[4,2]c[4,3] - c[3,2] + c[4,4],
    R :: Vector(1, 0)],
  [
    t[1,2,4,4],
    -c[2,4]c[4,1] + c[3,3]c[4,2] + c[2,3] - c[3,4],
    R :: Vector(1, 1)]]



BB.Border


BBSGen.NonTriv

BBSGen.Poldeg