Difference between revisions of "ApCoCoA-1:BBSGen.Poldeg"
From ApCoCoAWiki
(New page: <command> <title>BBSGen.PolDeg</title> <short_description>: This function computes the arrow degree of a given homogenous polynomial from the ring K[c[i,j]]. </short...) |
|||
Line 49: | Line 49: | ||
<see>BB.Box</see> | <see>BB.Box</see> | ||
<see>BBSGen.Wmat</see> | <see>BBSGen.Wmat</see> | ||
− | + | ||
<see>BBSGen.NonTriv</see> | <see>BBSGen.NonTriv</see> | ||
<see>BBSGen.BBFinder</see> | <see>BBSGen.BBFinder</see> |
Revision as of 18:00, 7 June 2012
BBSGen.PolDeg
- This function computes the arrow degree of a given homogenous polynomial from the ring K[c[i,j]].
Syntax
BBSGen. Poldeg(F,OO,BO,N,W); BBSGen.Poldeg(F:POLY,OO:LIST,BO:LIST,N:INT,W:MAT):VECTOR;
Description
@param A homogeneous polynomial with respect to the arrow grading from the ring K[c_ij], order ideal OO, border BO,number of indeterminates of the polynomial ring K[x_1,...,x_n] and the degree matrix.
@return Degree vector of the given homogenous polynomial wrt. the arrow grading .
Example
Use R::=QQ[x[1..2]]; OO:=BB.Box([1,1]); BO:=BB.Border(OO); W:=BBSGen.Wmat(OO,BO,N); Mu:=Len(OO); Nu:=Len(BO); N:=Len(Indets()); Use XX::=QQ[c[1..Mu,1..Nu],t[1..N,1..N,1..Mu,1..Mu]]; F:= c[2,4]c[4,1] - c[3,3]c[4,2] - c[2,3] + c[3,4]; BBSGen.Poldeg(F,OO,BO,N,W); R :: Vector(1, 1)