Difference between revisions of "ApCoCoA-1:CharP.LASolve"
Line 9: | Line 9: | ||
<par/> | <par/> | ||
− | This function computes the unique zero in <tt>F_2^n</tt> of a polynomial system over <tt>F_2 </tt>. It uses LA-Algorithm to find the unique zero. The LA-Algorithm generates a sequence of linear systems to solve the given system. The LA-Algorithm can find the unique zero only. If the given polynomial system has more than one zero's in <tt>F_2^n </tt> then this function does not find any zero. In this case | + | This function computes the unique zero in <tt>F_2^n</tt> of a polynomial system over <tt>F_2 </tt>. It uses LA-Algorithm to find the unique zero. The LA-Algorithm generates a sequence of linear systems to solve the given system. The LA-Algorithm can find the unique zero only. If the given polynomial system has more than one zero's in <tt>F_2^n </tt> then this function does not find any zero. In this case the trivial solution is given. To solve linear system naive Gaußian elimination is used. |
Line 49: | Line 49: | ||
CharP.LAAlgorithm(F); | CharP.LAAlgorithm(F); | ||
− | + | [0, 0, 0, 0] | |
− | |||
− | |||
− | |||
− | |||
− | |||
</example> | </example> |
Revision as of 15:35, 4 June 2012
CharP.LAAlgorithm
Computes the unique F_2-rational zero of a given polynomial system over F_2.
Syntax
CharP.LAAlgorithm(F:LIST):LIST
Description
Please note: The function(s) explained on this page is/are using the ApCoCoAServer. You will have to start the ApCoCoAServer in order to use it/them.
This function computes the unique zero in F_2^n of a polynomial system over F_2 . It uses LA-Algorithm to find the unique zero. The LA-Algorithm generates a sequence of linear systems to solve the given system. The LA-Algorithm can find the unique zero only. If the given polynomial system has more than one zero's in F_2^n then this function does not find any zero. In this case the trivial solution is given. To solve linear system naive Gaußian elimination is used.
@param F: List of polynomials of given system.
@return The unique solution of the given system in F_2^n.
Example
Use Z/(2)[x[1..4]]; F:=[ x[1]x[2] + x[2]x[3] + x[2]x[4] + x[3]x[4] + x[1] + x[3] + 1, x[1]x[2] + x[1]x[3] + x[1]x[4] + x[3]x[4] + x[2] + x[3] + 1, x[1]x[2] + x[1]x[3] + x[2]x[3] + x[3]x[4] + x[1] + x[4] + 1, x[1]x[3] + x[2]x[3] + x[1]x[4] + x[2]x[4] + 1 ]; -- Then we compute the solution with CharP.LAAlgorithm(F); [0, 1, 0, 1]
Example
Use Z/(2)[x[1..4]]; F:=[ x[2]x[3] + x[1]x[4] + x[2]x[4] + x[3]x[4] + x[1] + x[2] + x[3] + x[4], x[2]x[3] + x[2]x[4] + x[3]x[4] + x[2] + x[3] + x[4], x[1]x[2] + x[2]x[3] + x[2]x[4] + x[3]x[4] + x[1] + x[2], x[1]x[2] + x[2]x[3] + x[2]x[4] + x[3]x[4] + x[1] + x[2] ]; -- Solution is not unique i.e. [0, 1, 1, 1], [0, 0, 0, 0], and [1, 1, 1, 1] are solutions -- Then we compute the solution with CharP.LAAlgorithm(F); [0, 0, 0, 0]
See also
Introduction to Groebner Basis in CoCoA