Difference between revisions of "ApCoCoA-1:BBSGen.BBFinder"
From ApCoCoAWiki
(New page: <command> <title>BBSGen.BBFinder</title> <short_description>: Let Tau^kl_ij :=t[k,l,i,j] be the (i,j) ^th entry of matrix the operation [A_k,A_l]. This function finds the polynomial ...) |
|||
Line 53: | Line 53: | ||
<see>BBSGen.Wmat</see> | <see>BBSGen.Wmat</see> | ||
<see>BBSGen.BBTau</see> | <see>BBSGen.BBTau</see> | ||
− | + | <see>BBSGen.NonTriv</see> | |
+ | <see>BBSGen.Poldeg</see> | ||
<key>Wmat</key> | <key>Wmat</key> | ||
<key>BBSGen.Wmat</key> | <key>BBSGen.Wmat</key> |
Revision as of 20:49, 31 May 2012
BBSGen.BBFinder
- Let Tau^kl_ij :=t[k,l,i,j] be the (i,j) ^th entry of matrix the operation [A_k,A_l]. This function finds the polynomial and its degree which corresponds to the elements given in the list.
Syntax
BBFinder(LF,OO,N,Poly); BBFinder(LF:LIST,OO:LIST,BO:LIST,N:INTEGER,W:MATRIX):LIST
Description
@param List of t[k,l,i,j] , order ideal OO, border BO, the number of Indeterminates of the Polynomial Ring and the Weight Matrix.
@return List of generators of the vanishing ideal of the border basis, their position in the matrix [A_k,A_l] and their degree wrt. arrow grading.
Example
Use R::=QQ[x[1..2]]; OO:=BB.Box([1,1]); BO:=BB.Border(OO); W:=BBSGen.Wmat(OO,BO,N); Mu:=Len(OO); Nu:=Len(BO); N:=Len(Indets()); Use XX::=QQ[c[1..Mu,1..Nu],t[1..N,1..N,1..Mu,1..Mu]]; BBSGen.BBFinder([t[1,2,3,4],t[1,2,2,4]],OO,BO,N,W); [ [ [ R :: Vector(1, 2)], [t[1,2,3,4]], [ -c[2,4]c[3,1] + c[3,2]c[3,3] + c[3,4]c[4,3] - c[3,3]c[4,4] + c[1,3]]], [[ R :: Vector(2, 1)], [ t[1,2,2,4]], [ -c[2,1]c[2,4] + c[2,2]c[3,3] + c[2,4]c[4,3] - c[2,3]c[4,4] - c[1,4]]]]