Difference between revisions of "BBTau"
From ApCoCoAWiki
(New page: <command> <title>BBSGen.BBTau</title> <short_description>Let Tau^kl_ij :=t[k,l,i,j] be the (i,j) ^th entry of matrix the operation [A_k,A_l]. For every k,l from {1,..,n} and i,j fro...) |
|||
Line 1: | Line 1: | ||
<command> | <command> | ||
<title>BBSGen.BBTau</title> | <title>BBSGen.BBTau</title> | ||
− | <short_description>Let Tau^kl_ij :=t[k,l,i,j] be the (i,j) ^th entry of matrix the operation [A_k,A_l]. | + | <short_description> |
− | + | ||
+ | Let Tau^kl_ij :=t[k,l,i,j] be the (i,j) ^th entry of matrix the operation [A_k,A_l]. For every k,l from {1,..,n} and i,j from {1,...,\mu}, this function finds the polynomial and its degree which corresponds to Tau^kl_ij. | ||
Revision as of 20:05, 31 May 2012
BBSGen.BBTau
Let Tau^kl_ij :=t[k,l,i,j] be the (i,j) ^th entry of matrix the operation [A_k,A_l]. For every k,l from {1,..,n} and i,j from {1,...,\mu}, this function finds the polynomial and its degree which corresponds to Tau^kl_ij.
Syntax
BBTau(OO,BO,W,N); BBTau(OO:LIST,BO:LIST,W:MATRIX,N:INT):LIST
Description
@param The order ideal OO, border BO, the number of Indeterminates of the Polynomial Ring and the Weight Matrix.
@return List of generators of the vanishing ideal of the border basis, their position in the matrix [A_k,A_l] and their degree wrt. arrow grading.
Example
Use R::=QQ[x[1..2]]; OO:=BB.Box([1,1]); BO:=BB.Border(OO); W:=BBSGen.Wmat(OO,BO,N); Mu:=Len(OO); Nu:=Len(BO); N:=Len(Indets()); Use XX::=QQ[c[1..Mu,1..Nu],t[1..N,1..N,1..Mu,1..Mu]]; Set Indentation; BBSGen.BBTau(OO,BO,W,N); [ [t[1,2,1,1], 0,0], [ t[1,2,1,2], c[1,2]c[3,1] + c[1,4]c[4,1] - c[1,3], R :: Vector(1, 2)], [t[1,2,1,3], -c[1,1]c[2,2] - c[1,3]c[4,2] + c[1,4], R :: Vector(2, 1)], [t[1,2,1,4], -c[1,1]c[2,4] + c[1,2]c[3,3] + c[1,4]c[4,3] - c[1,3]c[4,4], R :: Vector(2, 2)], [ t[1,2,2,1],0,0], [ t[1,2,2,2], c[2,2]c[3,1] + c[2,4]c[4,1] - c[2,3], R :: Vector(1, 1)], [ t[1,2,2,3], -c[2,1]c[2,2] - c[2,3]c[4,2] - c[1,2] + c[2,4], R :: Vector(2, 0)], [t[1,2,2,4], -c[2,1]c[2,4] + c[2,2]c[3,3] + c[2,4]c[4,3] - c[2,3]c[4,4] - c[1,4], R :: Vector(2, 1)], [t[1,2,3,1], 0,0], [t[1,2,3,2], c[3,1]c[3,2] + c[3,4]c[4,1] + c[1,1] - c[3,3], R :: Vector(0, 2)], [ t[1,2,3,3], -c[2,2]c[3,1] - c[3,3]c[4,2] + c[3,4], R :: Vector(1, 1)], [ t[1,2,3,4], -c[2,4]c[3,1] + c[3,2]c[3,3] + c[3,4]c[4,3] - c[3,3]c[4,4] + c[1,3], R :: Vector(1, 2)], [t[1,2,4,1], 0,0], [t[1,2,4,2], c[3,1]c[4,2] + c[4,1]c[4,4] + c[2,1] - c[4,3], R :: Vector(0, 1)], [ t[1,2,4,3], -c[2,2]c[4,1] - c[4,2]c[4,3] - c[3,2] + c[4,4], R :: Vector(1, 0)], [t[1,2,4,4], -c[2,4]c[4,1] + c[3,3]c[4,2] + c[2,3] - c[3,4], R :: Vector(1, 1)]] -------------------------------