Difference between revisions of "ApCoCoA-1:BBSGen.Wmat"
From ApCoCoAWiki
(Removing all content from page) |
|||
Line 1: | Line 1: | ||
+ | <command> | ||
+ | <title>BBSGen.Wmat</title> | ||
+ | <short_description>This function computes the Weight Matrix with respect to the arrow grading. </short_description> | ||
+ | |||
+ | <syntax> | ||
+ | WMat(OO,BO,N): | ||
+ | WMat(OO:LIST,BO:LIST,N:INTEGER):MATRIX | ||
+ | </syntax> | ||
+ | <description> | ||
+ | |||
+ | <itemize> | ||
+ | <item>@param The order ideal OO, the border BO and the number of Indeterminates of the Polynomial Ring. | ||
+ | </item> | ||
+ | <item>@return Weight Matrix.</item> | ||
+ | </itemize> | ||
+ | |||
+ | |||
+ | <example> | ||
+ | Use R::=QQ[x[1..2]]; | ||
+ | OO:=BB.Box([1,1]); | ||
+ | BO:=BB.Border(OO); | ||
+ | N:=Len(Indets()); | ||
+ | ---------------------- | ||
+ | W:=Wmat(OO,BO,N); | ||
+ | W; | ||
+ | |||
+ | Mat([ | ||
+ | [0, 2, 1, 2, 0, 2, 1, 2, -1, 1, 0, 1, -1, 1, 0, 1], | ||
+ | [2, 0, 2, 1, 1, -1, 1, 0, 2, 0, 2, 1, 1, -1, 1, 0] | ||
+ | ]) | ||
+ | |||
+ | |||
+ | </example> | ||
+ | |||
+ | </description> | ||
+ | <see>Package_borderbasis</see> | ||
+ | <see>BB.Box</see> | ||
+ | <see>BB.Border</see> | ||
+ | <types> | ||
+ | <type>borderbasis</type> | ||
+ | <type>ideal</type> | ||
+ | <type>apcocoaserver</type> | ||
+ | </types> | ||
+ | <key>Wmat</key> | ||
+ | <key>BBSGen.Wmat</key> | ||
+ | <key>bbsmingen.Wmat</key> | ||
+ | <wiki-category>Package_borderbasismingen</wiki-category> | ||
+ | </command> |
Revision as of 15:19, 31 May 2012
BBSGen.Wmat
This function computes the Weight Matrix with respect to the arrow grading.
Syntax
WMat(OO,BO,N): WMat(OO:LIST,BO:LIST,N:INTEGER):MATRIX
Description
@param The order ideal OO, the border BO and the number of Indeterminates of the Polynomial Ring.
@return Weight Matrix.
Example
Use R::=QQ[x[1..2]]; OO:=BB.Box([1,1]); BO:=BB.Border(OO); N:=Len(Indets()); ---------------------- W:=Wmat(OO,BO,N); W; Mat([ [0, 2, 1, 2, 0, 2, 1, 2, -1, 1, 0, 1, -1, 1, 0, 1], [2, 0, 2, 1, 1, -1, 1, 0, 2, 0, 2, 1, 1, -1, 1, 0] ])